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Abstract

We study technology adoption in a dynamic model of price competition. Adoption in-

volves disruption costs and learning by doing. Because of disruption costs, the adopting

firm begins in a market disadvantage, which may persist if its rival captures the cus-

tomers that the adopting firm needs to learn the technology. The prospect of future

rents by the rival results in: (i) A failure to adopt socially efficient technologies; (ii)

An equilibrium preference for technologies that are learned faster but have lower social

value; (iii) More technologies being adopted if more firms enter the market.

JEL: L1, O3, D4.

Keywords: Technology adoption; adoption breakdowns; dynamic Bertrand competi-

tion; Bertrand sum; discounted Bertrand sum; endogenous impatience.

1. Introduction

The adoption of new technologies is the leading force behind productivity growth in many

industries. Still, when a new technology is adopted things often go wrong in the beginning.

Adopting firms face mayor adaptation problems and become temporarily less productive

than non-adopters. Such problems, known as switchover disruption costs, may be overcome

through learning by doing as firms accumulate experience using the new technology. Indeed,

the idea that productivity growth first falls and later rises after the adoption of a new

technology is supported by the micro-evidence according to Huggett and Ospina (2001).

∗Pérez acknowledges support from CONICYT under the FONDECYT 2014 Postdoctoral Grant No.
3140360. Ponce acknowledges support from CONICYT under the FONDECYT 2014 Regular Grant No.
1140582.
†Escuela de Administración, Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna 4860,
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The relevance of disruption costs in the introduction of products and processes is well-

known in the management literature. Christensen (1997) provides ample evidence of dis-

ruptive technologies that result in worse product performance in the near-term. Tyre and

Hauptman (1992) list as sources of disruption costs the novelty of technical features, the

low applicability of previous knowledge, and the incompatibility of current organizational

practices with the arriving innovation. Leonard-Barton (1988) shows that the adaptation

to a new technology often requires active cooperation between users and developers. In the

economics literature, Holmes et al. (2012) provide an excellent discussion of the importance

of disruption costs in a number of innovation episodes.

Likewise, the business strategy consulting industry has found extensive empirical evi-

dence of experience curves (Henderson, 1968). This evidence has had a profound impact on

strategic management research and practice. Indeed, the Harvard Business Review listed the

experience curve as ‘one of the five charts that changed the world (Ovans, 2011).’ Economists

have also studied the empirical evidence on, and the theoretical implications of, learning by

doing since the seminal works of Wright (1936) and Arrow (1962a). A review of both strands

of the literature may be found in Thompson (2010).

The interplay between disruption costs and learning by doing in strategic settings has

been mostly overlooked in the literature. This is unfortunate because many industrial inno-

vations take place in oligopolistic environments where strategic issues play a leading role. In

this article we develop a simple model to study technology adoption in a strategic setting

with disruption costs and learning by doing.

Our main observation is that non-adopting firms have incentives to undercut prices to

prevent the learning of the new technology because this makes the adopting firm a weaker

future competitor. The prospect of future rents by non-adopting firms places a pecuniary

cost on the adopting firm that, in some cases, renders the adoption of Pareto superior

technologies unprofitable. In other words, as ‘stealing’ current customers from the adopting

firm creates future rents without adding any social value, the know-how needed to learn the

new technology becomes an artificially overpriced ‘asset’ in the market. This overpricing

renders adoption unprofitable.

We study these issues in a dynamic duopoly model of Bertrand competition in which

the adopting firm has a limited amount of time to learn the new technology. This time

limit may come from the threat of imitation, the expiration of a patent, etc. In the model,

firms offer potentially differentiated products to a sequence of short-lived customers with

unit demand. The main advantage of this setting with respect to others, e.g., a Cournot

model of competition, is that it isolates the dynamics of adoption by assuming away static

equilibrium distortions.
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Within this framework, we obtain three main results. First, we confirm that, in some

cases, the adopting firm prefers to stick to an old technology rather than to switch to a better

one. Second, we show that, for the cases of interest, between two technologies with the same

social value, the adopting firm prefers the technology whose flow payoffs are received earlier.

This equilibrium bias towards technologies with larger early rewards is called the impatience

property. As a corollary, we prove that the bias embedded in the impatience property favors

the adoption of technologies that are learned faster but have lower social value. Third, we

show that adoption is made easier if more firms enter the market. More precisely, we prove

that adding non-adopting firms to our model enlarges the set of (efficient) technologies that

are adopted in equilibrium. Taken together, our results should warn regulators of keeping

an eye on industries either with few competitors or where technological improvements take

longer to settle. In our view, these are the industries in which disruption costs and learning

by doing raise a strategic barrier to efficient adoption and productivity growth.

Holmes et al. (2012) also study adoption in the presence of switchover disruptions. Using

an Arrow-type model, they show that a more competitive environment favors adoption as

the cost of adopting a technology is the forgone profits during the disruption period.1 Our

insight is different as we stress that disruption costs open a future profit opportunity to

competing firms. In line with a large body of evidence (see Holmes and Schmitz, 2010), we

also show that additional competition may promote adoption. But while in Holmes et al.’s

article competition is beneficial because it reduces the forgone profits of the adopting firm,

in our case it is so because it limits the spurious rents of non-adopters. Our mechanism thus

offers a novel channel through which extra competition facilitates the adoption of a new

technology.

In the industrial organization literature, dynamic price competition and learning by doing

have been explored by Cabral and Riordan (1994) and, more recently, by Besanko et al.

(2010) and Besanko et al. (2014). The goal of these articles is to understand how learning

by doing, jointly with organizational forgetting in Besanko et al. (2010), determines pricing

and market dominance in a duopolistic setting. Schivardi and Schneider (2008) examine a

dynamic investment game with learning and disruptive adoption. Their analysis, however,

resembles a multi-stage patent race in which the adopting firm learns the potential of a new

technology in a Bayesian fashion.

Our work is also related to a list of macro articles in which learning and disruption costs

are at the center of the stage. In perfectly competitive environments, Chari and Hopenhayn

1Arrow (1962b) was the first to compare adoption incentives under perfect competition and monopoly.
However, in Arrow’s article and in the literature that follows, for example Gilbert and Newbery (1982), there
is neither learning by doing or disruption costs.
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(1991) and Parente (1994) examine adoption when the implementation of a technology entails

losing previously acquired knowledge. Jovanovic and Nyarko (1996) add to this literature by

studying the full dynamics of technology adoption in a one-agent Bayesian model of learning

by doing. Klenow (1998) examines a firm’s decision of when to update a process technology.

In contrast to these articles, we study adoption in a strategic setting and show that market

structure is crucial for the adoption of new technologies. This is a key distinctive feature of

our work.

The remainder of this article is organized as follows. Section 2 presents the model. Section

3 provides a stripped-down, illustrative example of an adoption breakdown. Sections 4 and

5 introduce some useful concepts and preliminary findings. Section 6 presents our main

results. Section 7 concludes. Proofs are collected in the Appendix.

2. The Model

We present a simple, canonical model of learning by doing and technology adoption in the

spirit of Cabral and Riordan, 1994, Besanko et al., 2010, and Besanko et al., 2014.

The industry. Consider an industry with two firms denoted by i ∈ {1, 2} and a finite number

of T + 1 customers with unit demand. Sales take place over time: at each period only one

customer is available to buy from the firms. Time is denoted by t ∈ T := {0, ..., T} and,

without loss of generality, firms do not discount the future. Firms start with a baseline

technology that allows them to produce at a cost c0 a unit of a product that customers value

at v0.2 With s0 := v0 − c0 we denote the constant, positive flow (per-period) surplus that is

created every time a firm sells to a customer using the baseline technology.

Technology adoption. To ease the exposition, we assume that only firm 1 can adopt a new

technology. The new technology may bring either product quality improvements or cost

savings, and it is described by the flow surplus it creates at each sale by firm 1. This flow

surplus, in turn, depends on the state of the technology via the formula

s(xt) = v(xt)− c(xt),

where xt is the stock of know-how (cumulative experience) in using the technology at the

beginning of period t, and v and c are the new technology’s value and cost. By making a

sale, firm 1 adds to its stock of know-how. Hence, the evolution of firm 1’s stock of know-how

2Our results also hold true for asymmetric values and costs.
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is controlled by the law of motion

xt+1 = xt + yt, x0 ≥ 0 given,

where yt ∈ {0, 1} indicates whether firm 1 sells at period t and x0 is the stock of know-how

at the moment of adoption. When firm 1 makes a sale, i.e., when yt = 1, it gets an additional

unit of know-how through learning by doing. To ease notation, we set the initial stock of

know-how x0 to zero. Hence, the stock of know-how up to the beginning of period t equals

cumulative sales with the new technology up to the beginning of that period:

xt =
t−1∑
k=0

yk,

where xt ≤ t (owing to the fact that there cannot be more sales than periods). Henceforth,

we write the flow surplus that firm 1 creates if it sells at period t simply as s(xt). Because

the flow surplus changes in time only if sales do, hereafter we abuse notation and denote

cumulative sales with the new technology by x; that is, x := xt. The new technology fulfills:

s(0) ≤ s0, (A1)

s(x+ 1) ≥ s(x). (A2)

The first assumption captures the idea of switchover disruption costs : the first sale made

with the new technology creates a weakly smaller flow surplus than the one created by the

baseline technology (see Tyre and Hauptman, 1992; Leonard-Barton, 1988; Holmes et al.,

2012; Benkard, 2000). We say there are disruption costs if inequality A1 is strict, and their

magnitude is given by s0 − s(0). The second inequality says that selling an additional unit

increases the flow surplus that the new technology creates trough learning by doing—either

by raising the value of the product or by saving production costs. We further assume that

adoption is socially efficient. Formally, there is a minimum number of cumulative sales

q ≤ T + 1 such that the social value of the new technology is non-negative:

q−1∑
x=0

s(x) ≥ qs0 + ε, (A3)

where ε > 0 is a sunk cost incurred at adoption. The left-hand side of A3 is the surplus

from selling q units with the new technology. Similarly, the right-hand side, which measures

the opportunity cost of adopting the technology, is the surplus from selling q units with the

baseline technology plus the sunk cost. The sunk cost must be distinguished from disruption
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costs: the former is a fixed cost while the latter are the initial losses in the efficiency of firm 1

(due, for instance, to higher production costs). We aim to understand adoption decisions for

a whole class of technologies: the set S of all technologies s satisfying Assumptions A1–A3.3

Note that, for social efficiency, every technology in set S should be adopted from the outset

and firm 1 should sell at each period using the adopted technology.

Actions, payoffs, and equilibrium. Adoption is decided within the framework of the following

extensive-form game: At the beginning of each period, firm 1 chooses whether or not to

replace the baseline technology s0 with a given technology s in S.4 The choice is irreversible.

Then, firms simultaneously announce their flow surplus offers to the current customer: b :=

v − p, where p is the price. (We work with flow surplus offers instead of prices to simplify

notation and presentation.) The customer, in turn, decides whether or not to buy from one

of the firms. The game continues this way until the last period and firms have complete and

perfect information.

Payoffs are as follows: At each period the current customer obtains either a zero surplus

if he does not buy or the surplus b offered by his trading partner. Likewise, each firm receives

nothing if it does not sell or a flow payoff equal to s− b = p− c if it does. The payoff of each

firm equals the sum of its flow payoffs.

Our solution concept is pure-strategy Markov perfect equilibrium (MPE, for short) with

the pair (x, t) as state variable. A MPE is a subgame perfect equilibrium in which the

surplus-offer (pricing) strategies of the firms depend only on the state variable.

Vocabulary. We refer to continuation payoffs simply as payoffs. Likewise, we call per-period

payoffs flow payoffs. We use the same wording for surpluses and social values. We also

distinguish between pre-adoption payoffs that correspond to the no-adoption decision and

post-adoption payoffs. Lastly, though our model encompasses quality improvements, much

of our discussion is in terms of cost-saving technologies because some may interpret higher

surpluses more easily as lower costs.

3. An Example

We begin our study by providing a stripped-down example where an adoption breakdown

occurs in equilibrium.

Example 1. Consider a two-period model in which customers value at 1 the product of

either technology. The cost of producing with the baseline technology is c0 = 0.5, whereas

3From a formal viewpoint, set S is thus parametrized by the triple (T, s0, ε).
4We assume that firm 1 adopts s if it is indifferent.
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the new technology allows firm 1 to produce a second unit at a cost 0.1 after producing the

first unit at a cost 0.75. Assumptions A1 and A2 are satisfied because

s(0) = 0.25 < 0.5 = s0 < 0.9 = s(1).

Assumption A3 is also met for any ε ≤ 0.15 as

s(0) + s(1) = 1.15 ≥ 1 + ε = 2s0 + ε.

Suppose that firm 1 adopts the new technology and sells to the first costumer. Then, firm 1

would also sell to the second customer and get a second-period equilibrium payoff equal to

c0 − c(1) = 0.5 − 0.1 = 0.4.5 Therefore, its payoff in the dynamic competition game would

be

p− 0.75︸ ︷︷ ︸
Current
payoff

+ [0.4]︸︷︷︸
Future
payoff

, (1)

where p is the price at which firm 1 sells in the first period. This price must satisfy

1− p ≥ b2,

where 1 − p is the utility that the first costumer gets if he buys from firm 1 and b2 is the

maximum utility that firm 2 would be willing to offer to the first customer.

We now obtain b2. Firm 2 can offer the first customer a utility equal to s0. But, in

addition, if firm 2 sells to the first costumer, it would prevent the learning of the technology

and keep firm 1’s cost at 0.75 in the second period. Firm 2 could in this case sell also to

the second customer and get a second-period equilibrium payoff equal to the disruption cost

s0 − s(0) = 0.5− 0.25 = 0.25.6 In short:

b2 = s0︸︷︷︸
Flow

surplus

+ [s0 − s(0)]︸ ︷︷ ︸
Future

rent

= 0.75.

As a result, firm 1 may charge the first customer a price (at most) equal to

p = c0 − [s0 − s(0)] = 0.25.

Plugging this (maximum) price into (1) we see that firm 1 would incur in a loss equal to

5Hereafter we consider only equilibria in which the customer buys from the most efficient firm if they ask
for the same price. This tie-breaking rule is standard (see Deneckere and Kovenock, 1996).

6Or, equivalently, c(0)− c0 = 0.75− 0.5 = 0.25.
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0.1 in order to sell both units. Firm 1 would thus refrain from selling—and get a zero post-

adoption payoff. Consequently, we conclude that there would not be adoption in equilibrium

for any sunk cost ε > 0.

4. Definitions

The definitions and discussion of this section are key to follow the results below. With

π(x) := s(x) − s0 we denote the flow social value at state (x, t) of the new technology

with respect to the old one. Note that, because of disruption costs, there is a maximum

number of cumulative sales x̂ such that π(x) < 0 for 0 ≤ x < x̂. In words, the new

technology is less productive than the baseline technology until the former accrues x̂ sales.

Also, observe that the positive (negative) part of the flow social value function π+(x) (π−(x))

equals the equilibrium payoff that firm 1 (firm 2) would get in a static Bertrand game

(the positive and negative parts of a function f are defined as f+(a) := max{f(a), 0} and

f−(a) := −min{f(a), 0} for any element a in the domain of f). More concretely, let (x, t)

be a state at which cumulative sales x are below threshold x̂. If a static Bertrand game were

played at this state, firm 2 would sell to the available customer and obtain a payoff equal

to −π(x). A parallel observation applies to any state (x, t) with cumulative sales x at or

above threshold x̂. Lastly, recall that, due to learning by doing, the flow social value π(x) is

non-decreasing in cumulative sales x. We display flow social values at all feasible states in

the triangular array A:

π(0) π(0) . . . π(0) π(0)

π(1) π(1) . . . π(1)

Sales
. . .

...
...

π(T − 1) π(T − 1)

π(T ),

Time

where rows count cumulative sales and columns count periods. For any state (x, t), let Ax,t be

the subarray with first entry in row x+1 and column t+1, and last entry in row T +1+x− t
and column T + 1. This subarray stands for the subgame that begins at (x, t).

Example 2. Consider a new technology with associated triangular array A:

−0.75 −0.75 −0.75

0 0

2.

(2)
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Note that π(x) < 0 for x = 0 and π(x) ≥ 0 for x ≥ 1, so x̂ = 1. The reader may think

of π(0) as the initial cost disadvantage of the new technology with respect to the old one

(i.e., as c0 − c(0)). The flow social value of this new technology becomes positive after two

consecutive sales as a result of accumulated experience. If in the first period firm 2 sells one

unit, the game then shifts to the subgame that corresponds to the subarray A0,1:

−0.75 −0.75

0,

which begins at row 1, column 2 and ends at row 2, column 3 of (2). In this subarray

π(0) = −0.75 indicates that if a static Bertrand game were played at any state of the form

(0, t) firm 2 would sell to the customer and obtain a payoff equal to π−(0) = 0.75.

The advantage of arranging our data in a triangular array will become apparent below.

With that in mind, let us introduce the following concepts. First, from the definition of the

flow social value π(·) it ensues that the social value of using the technology from state (x, t)

onward is

d(x, t) :=
T−t∑
k=0

π(x+ k), (3)

which obtains as the summation over the main diagonal of subarray Ax,t. This social value is

the payoff that firm 1 would get if firm 2 played its static Bertrand best-response from state

(x, t) onward. Accordingly, we refer to (3) as firm 1’s Bertrand sum. Second, let cumulative

sales x be below threshold x̂, i.e., let π(x) < 0. Then, the payoff that firm 2 would get if

firm 1 played its static Bertrand best-response from state (x, t) onward is

r(x, t) := −(T + 1− t)π(x), (4)

which obtains as the negative of the summation over the first row of Ax,t. We refer to (4) as

firm 2’s Bertrand sum. Third, the summation of flow social values at all states from state

(x, t) onward is

z(x, t) :=
T−t∑
k=0

[
T + 1− (t+ k)

]
π(x+ k), (5)

which obtains as the summation of all the entries of Ax,t. A nice interpretation of (5) comes
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out of looking at it as a discounted combination of static Bertrand payoffs:7

z(x, t) =
1

δT−t,t

T−t∑
k=0

δk,t π(x+ k), (6)

where δk,t := 1− (T + 1− t)−1k may be read as a discount factor.8 Correspondingly, we refer

to it as the discounted Bertrand sum. This sum may contain positive as well as negative

terms. More concretely, static Bertrand payoffs of firm 1 enter (6) as nonnegative numbers,

whereas those of firm 2 enter as nonpositive numbers. The discounted Bertrand sum is a

rough measure of the strategic position of firm 1 against firm 2.

Example 3. For the triangular array (2) of Example 2, it is easy to see that d(0, 0) = 1.25,

r(0, 0) = 2.25, and z(0, 0) = −0.25. Also, d(0, 1) = −0.75, r(0, 1) = 1.5, and z(0, 1) = −1.5.

5. Preliminary Results

We begin this section studying the dynamic competition subgame that follows once a new

technology has been adopted. The following theorem states existence, uniqueness, and char-

acterizes MPE payoffs.9 (Recall the definitions of f+ and f− for a function f .)

Theorem 1 (Equilibrium payoffs). There is a unique MPE of the subgame that follows

adoption. In this equilibrium the payoffs of firms 1 and 2 are:

π1(x, t) = min {d+(x, t), z+(x, t)}, (7)

π2(x, t) = min {r+(x, t), z−(x, t)}. (8)

Theorem 1 shows that it suffices to compute the discounted Bertrand sum to single out

the selling firm at each state of the game. For instance, the array (2) of Example 2 has

z(0, 0) = −0.25. Hence, z+(0, 0) = 0 and z−(0, 0) = 0.25, meaning that firm 2 sells at the

first period. Then, because r+(0, 0) = 2.25 > z−(0, 0), firm 2 gets the payoff π2(0, 0) = 0.25

in equilibrium. Theorem 1 also constrains payoffs as follows: First, it says that payoffs are

nonnegative. This is intuitive because firms can always ask for prices that customers would

not accept. Second, it says that the payoff of a selling firm is the minimum between its

Bertrand sum and the discounted Bertrand sum. That is, it says that the most a firm can

make at any state is what it would make if its rival played its static Bertrand best-response

from that state onward.

7Note that (6) results from dividing and multiplying (5) by (T + 1− t).
8For a given period t, δk,t is a function of k. Thus δT−t,t corresponds to k = T − t.
9We focus on MPE in weakly dominant strategies.
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Corollary 1 (Monotonicity). In the unique MPE of the subgame that follows adoption, if a

firm sells at period t, then the same firm sells at all subsequent periods.

This result says that market leadership persists over time. The intuition is simple. Be-

cause of learning by doing, the flow surplus of firm 1 increases each time it makes a sale and

remains constant each time it misses a sale. Consequently, if firm 1 sells (does not sell) in

the current period it will also (neither) sell in the next period because its strategic position

will then be stronger (weaker). Corollary 1 and Theorem 1 together yield the next lemma.

Lemma 1 (No delay). In the unique MPE, adoption takes place only at the initial period.

Lemma 1 says that adoption is never delayed. Put differently, if firm 1 finds adoption

profitable at some period t, it will also find it profitable at an earlier period. The reason is

that every time firm 1 delays adoption one period it gives away its most profitable selling

opportunity. For instance, by delaying adoption from the first to the second period, firm 1

misses the sale that it could make in the last period at the end of its learning path.

Corollary 1 and Lemma 1 allow us to conclude that adopted technologies are fully learned

in equilibrium. As a consequence, the equilibrium outcome is efficient if, and only if, the

set S∗ of technologies that are adopted in equilibrium coincides with the set S of socially

efficient technologies. Because Corollary 1, Lemma 1, and Theorem 1 imply that π1(0, 0)

is the equilibrium post-adoption payoff of firm 1 and its pre-adoption payoff is zero (since

before adoption firms compete a la Bertrand, sell homogeneous products, and have identical

costs), the equilibrium outcome is efficient if, and only if, π1(0, 0) ≥ ε for all s in S. Our

next result identifies a sufficient condition for efficiency.

Proposition 1 (Efficient adoption). With zero switchover disruption costs, the equilibrium

outcome is efficient.

For simplicity, we confine the discussion of Proposition 1 to a cost-saving technology.

Without disruption costs, firm 1 is at least as efficient as firm 2 from the outset. Further,

because of learning by doing, firm 2’s cost will always be higher than firm 1’s cost. That is,

while firm 2 could sell by pricing below cost, it cannot hope to recoup that loss by pricing

above cost in the future. Firm 2 will then play its static Bertrand best response at each

period—equating price to cost. As a result, firm 1’s adoption payoff equals its Bertrand sum

minus the sunk cost—the social value of the technology—and efficiency ensues.

The formal, general argument is as follows. Without disruption costs, the flow social

value π(·) is nonnegative at all states. So, the discounted Bertrand sum is weakly larger

than firm 1’s Bertrand sum z(0, 0) ≥ d(0, 0). Efficiency ensues because Theorem 1 implies

that π1(0, 0) = d(0, 0) and Assumption (A3) guarantees ε ≤ d(0, 0) for all s in S.
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Figure 1: Two-period model with a cost-saving technology.

6. Main Results

Within this section we assume that disruption costs are positive. Our key findings come

in three groups: First, we show that some socially efficient technologies are not adopted.

Second, we describe the most distinctive features of these technologies. Third, we study the

effect of adding more firms on technology adoption.

6.A. Adoption Breakdowns

To ease the exposition, we define the set N of technologies

N := {s ∈ S : z(0, 0) < ε}.

This set contains any technology in S whose discounted Bertrand sum at t = 0 is smaller

than the sunk cost. Set N, which is clearly non-empty, is a subset of S, the set of socially

efficient technologies. Our first key result is Proposition 2.

Proposition 2 (Adoption breakdowns). In the presence of disruption costs, the equilibrium

outcome is inefficient:

S∗ = S− N.

In words, Proposition 2 says that any technology in set N will not be adopted in equilib-

rium. The economic intuition behind this proposition is most easily seen within a two-period

model with a cost-saving technology like the one displayed in Figure 1. The total surplus

that can be created with the baseline technology is twice the sum of the areas A and C in the
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figure—one for each period. On the other hand, the new technology can create a flow surplus

equal to C in the first period and to C plus A plus B in the second period. Consequently,

the new technology is weakly preferred to the baseline technology from a social viewpoint if,

and only if,

B ≥ A+ ε. (9)

That is, if assumption (A3) holds.

As we know from Corollary 1, and it is shown in Figure 1, if a firm sells to the first

customer then a cost advantage will let it sell to the second customer as well. This means

that each firm is willing to offer the first costumer not only its first-period flow surplus; C

for firm 1 and C plus A for firm 2, but also its potential second-period payoff. The potential

second-period payoff of firm 1 is B, so it is willing to offer the first customer C plus B.

Likewise, the potential second-period payoff of firm 2 is given by the shaded area of size A

in Figure 1. Moving backwards, this means that firm 2 is willing to offer the first customer

C plus two times A. As a result, the new technology will be adopted if, and only if,

B ≥ 2A+ ε.

Conversely, adoption will not take place if, and only if, the discounted Bertrand sum at t = 0

fulfills

z(0, 0) = 2 [C − (A+ C)︸ ︷︷ ︸
π(0)

] + (C + A+B)− (A+ C)︸ ︷︷ ︸
π(1)

= −2A+B < ε.

That is, if, and only if, the new technology s is in set N, as we aimed to show. Because this

inequality may hold even if efficiency condition (9) is satisfied, Proposition 2 states that the

equilibrium outcome is inefficient.

The cause of adoption breakdowns is, therefore, that firm 2 may appropriate the shaded

area in Figure 1 by precluding the learning of the new technology. The key economic intuition

behind Proposition 2 is that equilibrium adoption does not merely require the social value of

the technology to be nonnegative, it also requires this social value to be sufficiently high to

compensate for the potential second-period payoff of firm 2 represented by the shaded area

in Figure 1.

The interpretation of Proposition 2 in the general model, although similar to that of the

two-period, cost-saving model, is more involved and takes a recursive formulation. We have

seen that our game is not just a sequence of independent one-shot Bertrand games because

each sale made by firm 1 improves his strategic position against firm 2 and vice versa. We

also have seen that, for this reason, both firms are willing to offer more than their flow

surplus to the current customer. How much they offer will depend, of course, on the return
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they expect from the improved strategic position. The next proposition shows that, in order

to sell, each firm must offer each customer its rival’s potential payoff from an extra sale.

Proposition 3 (Recursive payoffs). In the unique MPE, the post-adoption payoffs of firms

1 and 2 can be written recursively as:

π1(x, t) = max

d(x, t)−
T−(t+1)∑
k=0

π2(x+ k, t+ 1 + k), 0

 ,

π2(x, t) = max

r(x, t)−
T−(t+1)∑
k=0

π1(x+ 1, t+ 1 + k), 0

 ,

where πi(·, T ) = max {(−1)i−1π(·), 0} for i ∈ {1, 2}.

To understand this proposition, suppose that firm 1 adopts the new technology and sells

at every period. If firm 2 always played its static Bertrand best response, firm 1 would get

its Bertrand sum d(t, t) at each t ∈ T as put forward in section 4. However, firm 2 may offer

more than its flow surplus s0 to some customers. Actually, it would be willing to offer

u2(t, t) = s0 + π2(t, t+ 1). (10)

That is, it would be willing to offer not only its flow surplus, but also the continuation

payoff that it would earn if it sold to the current customer. Proposition 3 says that firm

1 must transfer each customer a flow surplus equal to u2(t, t) to move forward along its

learning path. As a result, the payoff of firm 1 is given by its Bertrand sum minus the sum

of transfers it must grant to the customers at each succeeding period. If the total amount to

be transferred plus the sunk cost of adoption is greater than firm 1’s Betrand sum at t = 0,

i.e. if π1(0, 0) < ε, then the new technology will not be adopted. That is, anticipating the

pricing strategy of firm 2, firm 1 will not adopt the new technology in response to a credible

threat rather than to an actual price undercutting.

A ‘dual’ interpretation of the model and results so far is as follows. As ‘stealing’ customers

from firm 1 slows down the learning of the new technology and improves the future strategic

position of firm 2, experience becomes an artificially overpriced ‘asset’ in the market. In the

absence of disruption costs, know-how ‘prices’ are undistorted and the equilibrium outcome

is efficient. However, in the presence of disruption costs, know-how is overpriced because of

the spurious rents that firm 2 may appropriate. It is ultimately this overpricing what leads

firm 1 to desist from adopting in the first place.
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6.B. Endogenous Impatience

How can we tell adopted from non-adopted technologies apart? One may think, as our

previous result also suggests, that new technologies are adopted or not according to their

social value. Although this is not true in general, we show below that technologies with a

sufficiently high social value are indeed adopted. To state this result formally, let us define

the set G of technologies as

G := {s ∈ S : d(0, 0) ≥ ε+K},

where K := 1
2
T (T + 1)|π(0)|. We have the following proposition.

Proposition 4. In the unique MPE, every technology in set G is adopted.

Proposition 4 just says that firm 2 cannot prevent the learning of extremely productive

technologies. For technologies outside set G, however, the social value rule is insufficient

to decide whether adoption will take place in equilibrium. In particular, the inter-temporal

distribution of the social value of these technologies becomes a key factor as those technologies

which are learned faster deliver higher adoption payoffs. The next example illustrates this

point.

Example 4. Consider two technologies, s and s′, with triangular arrays:

−0.75 −0.75 −0.75

0.75 0.75

1.25,

−0.75 −0.75 −0.75

0 0

2,

and identical sunk costs ε = ε′ < 0.5. Even though both technologies have the same social

value d(0, 0) − ε = d′(0, 0) − ε′ = 1.25 − ε and disruption costs −π(0) = −π′(0) = 0.75, it

follows from Theorem 1 that π1(0, 0) = 0.5, whereas π′1(0, 0) = 0.10 Hence, technology s is

adopted but technology s′ is not.

To state this finding formally we need a definition that captures the idea of a technology

delivering larger early flow social values than another. Because the desired payoff compar-

isons can only be made between technologies with equal social values and disruption costs,

we say that technologies s and s′ are equivalent, and denote this relation by s ∼ s′, if, and

only if,

s, s′ ∈ S, d(0, 0) = d′(0, 0), and π(0) = π′(0).

10Recall that the size of the disruption cost is s0 − s(0) = −π(0).
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Figure 2: Two equivalent technologies: technology s′ (red) yields a zero adoption payoff; technology
s (black) is learned earlier and yields a positive adoption payoff.

Definition 1. Let s ∼ s′. Then, technology s is learned earlier than technology s′ if both

π(1) ≥ π′(1), ..., π(k) ≥ π′(k) and π(k + 1) ≤ π′(k + 1), ..., π(T ) ≤ π′(T ) hold with at least

one strict inequality.

The idea behind Definition 1 is very simple. First, we compare only equivalent technolo-

gies. Then, we say that technology s is learned earlier than technology s′ if during the first

k sales the former delivers higher flow social values than the latter. As both technologies

have the same social value, technology s′ must deliver higher flow social values during the

last T −k sales. Geometrically, technology s is learned earlier than technology s′ if s′ crosses

s at most once from below (see Figure 2).11

Proposition 5 (The impatience property). Let technology s be learned earlier than technol-

ogy s′. Then, firm 1’s adoption payoff with technology s is weakly higher than its adoption

payoff with technology s′.

The result shows that firm 2 is less willing to price below cost against new technologies

that are learned earlier (alternatively, know-how is less overpriced for these technologies).

The proposition generalizes the following intuitive argument. Consider a technology and

perturb it by shifting a unit of social value from the last period to the first period. (Clearly,

the perturbed tecnology is learned earlier than the original.) The cost of this perturbation

is to reduce the last-period social value in one unit—a static cost of one unit. The benefit

is, however, twofold: First, it increases the first-period flow social value in one unit. This

static benefit exactly compensates the static cost, leaving the social value of the technology

unchanged. Second, and key to the result, it increases the price at which firm 1 can sell to

the first costumer. This dynamic benefit ensues because, as firm 1 becomes more efficient

11Ignoring the point (0, π(0)).
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at the initial period, the continuation payoff that firm 2 would earn from selling to the first

customer diminishes.

There is indeed a more general illustration of the impatience embedded in equilibrium

payoffs. The idea suggests itself from the discounted Bertrand sum. For this purpose, we

write

z(0, 0) =
1

δT,0

T∑
k=0

δk,0 π(k), (11)

where δk,0 = 1 − (T + 1)−1k is read as an endogenously determined discount factor. The

rule says that a technology is adopted if, and only if, the discounted value in (11) is weakly

larger than ε. However, efficiency is characterized by the (non-discounted) Bertrand sum

d(0, 0) =
T∑
k=0

π(k)

being weakly larger than ε (see (3)). As we have seen, this endogenous discounting has two

consequences: First, a positive social value is not enough for adoption; second, technologies

whose flow surpluses are delivered earlier have more chances of being adopted. A third

consequence can be glimpsed from Proposition 5.

Proposition 6 (Inefficient choice). For any technology s in N with positive social value,

there is another technology s′ in S∗ with a smaller social value.

The proposition says that, if firm 1 could choose between technologies, the present bias

embedded in the impatience property would favor the adoption of technologies with smaller

but ‘better’ inter-temporally distributed social value. There is indeed a trade-off between the

social value of a technology and its temporal distribution. That is, firm 1 would be willing

to sacrifice efficiency in exchange for higher early flow surpluses.

6.C. The Value of Increasing Competition

Starting with Schumpeter (1942) there is a long-standing debate in economics as to whether

competition is beneficial or detrimental to technology adoption. Moreover, to the extent

that the degree of competition may be influenced by policy measures, it is important to

understand the mechanism by which its variation affects adoption decisions. These are very

important issues in industrial organization to which our model brings some novel insights.

We address these matters by adding a third, non-adopting firm with constant, positive

flow surplus s3 to our model, but the reader will be convinced that adding two or more

firms would not affect our conclusions. In order to make the appropriate comparisons across
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models, we need every technology s in S to remain Pareto efficient in the three-firm model

(in particular, inequality A3 must hold for every s in S if s0 is replaced by s3). Consequently,

we require s3 ≤ s0. This implies that firm 1 will continue to face competitive pressure only

from firm 2, its most efficient rival.

Our main finding is that the addition of a third firm with s3 ≤ s0 promotes adoption.

The economic intuition behind this result is simple: The spurious rents that firm 2 may

appropriate by preventing the learning of the new technology are now limited by the com-

petitive pressure of firm 3. This, in turn, leads to a higher adoption payoff as it reduces the

surplus that firm 1 must concede to customers along its learning path. The next example

paves the way for the formal statement of the result in Proposition 7.

Example 5. Consider the two-period model of Example 1 and add a third, non-adopting

firm with unitary cost c3 ∈ [0.5, 0.75]. Let ε = 0.1. Because v3 = v0 = 1 and c0 = 0.5,

we have s0 = 0.5 and s3 ∈ [0.25, 0.5]. Recall that the new technology lets firm 1 produce a

second unit at a cost 0.1 after producing the first unit at a cost 0.75. Therefore, Assumption

A2 is satisfied just as in Example 1, and the three-firm versions of Assumptions A1 and A3

are also met:

s(0) ≤ max{s0, s3},

s(0) + s(1)− 2 max{s0, s3} ≥ 2s0 + ε.

Suppose that firm 1 adopts the new technology and sells to the first customer. Then, firm 1

will also sell to the second customer and get a second-period payoff equal to 0.5− 0.1 = 0.4

because the presence of firm 3 does not alter the equilibrium price in this state. Firm 1’s

adoption payoff is thus

p† − 0.75︸ ︷︷ ︸
Current
payoff

+ [0.4]︸︷︷︸
Future
payoff

, (12)

where p† is the equilibrium price at period 0 if firm 3 is present. (Figures that are specific

to the three-firm model are denoted with †.) This price must satisfy

1− p† ≥ b†2,

where 1 − p† is the surplus (utility) that the first customer gets if he buys from firm 1 and

b†2 is the maximum surplus that firm 2 is willing to offer to the first customer.

We know that firm 2 is willing to concede at least its flow surplus to the first customer,

that is, b†2 ≥ s0 = 0.5. Besides, by selling to the first customer, firm 2 could prevent the

learning of the new technology and keep the cost of firm 1 at 0.75 in the second period. But
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now, and this is the key observation, firm 2 would compete for the second customer against

firm 3, which is more efficient than firm 1 in this state. So, firm 2 would get a second-period

payoff of s0 − s3.12 In short:

b†2 = s0︸︷︷︸
Flow

surplus

+ [s0 − s3]︸ ︷︷ ︸
Future

rent

= 1− s3.

Consequently, firm 1 can charge the first customer a price (at most) equal to:

p† = c0 − [s0 − s3] = 0.5− [0.5− s3].

Plugging this (maximum) price into (12) we see that it would result in a non-negative

adoption payoff for any s3 ≥ 0.35 or, equivalently, for any c3 ≤ 0.65. Because the pre-

adoption payoff of firm 1 is zero and the sunk cost is 0.1, the presence of a third firm results

in firm 1 adopting the new technology for any c3 < 0.55. Moreover, the second-period,

spurious rent of firm 2 goes down, whereas the payoff of firm 1 goes up, with s3.

Incidentally, adding a third firm has the only effect of reducing the size of the shaded

area in Figure 1 in the two-period, cost-saving model. Note that the potential second-period

payoff of firm 1 is still given by B, whereas its first-period flow surplus remains to be C.

Likewise, the first-period flow surplus of firm 2 continues to be C plus A. Therefore, the

presence of firm 3 only reduces the potential second-period profits of firm 2 that cause

adoption breakdowns.

It is worth mentioning the link between extra competition and equilibrium prices in the

two-period model. Combining (12) and (1) we see that the difference between adoption

payoffs with two and three firms is

p† − p = max{s3 − s(0), 0}. (13)

This equation captures what we call the ‘protective’ effect of competition: By decreasing the

socially spurious rents of firm 2, extra competition permits firm 1 to charge higher prices

and thus appropriate a higher share of the social value of the new technology. (Of course,

there is no protective effect if s3 ≤ s(0).)

We proceed now to generalize these results. Let S† be the set of adopted technologies

with three firms. We say that the value of competition is (weakly) positive if, and only if,

S† ⊇ S∗.13 Likewise, we say that the value of competition is (weakly) increasing in s3 if, and

12Or, equivalently, c3 − c0.
13Recall that S∗ is the set of adopted technologies with two firms.
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only if, set S† is non-decreasing in s3; i.e., Ŝ† ⊇ S̃† if ŝ3 > s̃3.

Proposition 7 (The value of increasing competition). Let a third firm with s3 ≤ s0 be added

to our original model. Then, the value of competition is positive and increasing. Furthermore,

if s3 = s0 the MPE outcome is efficient.

Arrow (1962b) showed that adoption incentives are stronger under competition than un-

der monopoly. For a non-drastic innovation, the cost savings due to adoption are higher in

a competitive industry because output is larger than under monopoly. For a drastic innova-

tion the idea is slightly different as post-adoption output under competition and monopoly

coincide. What discourages innovation in this case is that, by adopting a technology, the

monopolist loses pre-adoption profits that are zero under perfect competition. More com-

petition is also beneficial in Holmes et al. (2012). In their model, the adopting firm reduces

output during the disruption period and, hence, loses pre-adoption profits. Because such

loses increase with the market power of adopting firms, those with less market power have

stronger adoption incentives.

The Arrow effect and the Holmes et al. effect work trough the output restrictions that

firms with market power undertake relative to competitive firms. In both cases, lost pre-

adoption profits are key to show that competition is beneficial. On the contrary, in our

model demand is inelastic and pre-adoption profits are zero. Hence none of these forces is

present. Firms compete each period for a single customer with unit demand and, therefore,

the competitive pressure of additional firms works (only) by limiting the future prices that the

second firm may charge once it has impeded the learning of the technology. Our mechanism

thus offers a novel channel through which extra competition may facilitate the appropriation

of the value of a new technology.

7. Concluding Comments

We have presented a dynamic model of technology adoption that captures the idea that

adoption creates socially spurious rents for non-adopters. Within this framework, we have

shown that adoption breakdowns may come as a consequence of disruption costs and learning

by doing. We have been able to characterize the technologies most prone to experience

adoption failures, i.e., technologies with slow learning curves. As a corollary, we have shown

that firms may prefer adopting inferior technologies if these can be learned faster. We have

also assessed the impact of adding more firms obtaining that increasing competition spurs

adoption. Summing up, our results should warn regulators of keeping an eye on industries

either with few competitors or where technological improvements take longer to settle. In

our view, these are the industries in which adoption failures seem most likely to happen.
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Our results generalize straightforwardly in a number of directions. Firms could discount

the future. We may consider exogenous technological change by simply letting function s

depend on time as well as on accumulated sales. Likewise, old technologies could be subject

to exogenous progress.

Other generalizations require significant departures from our setup. Among these, intro-

ducing randomness is perhaps the most natural. We learned in Corollary 1 that adopted

technologies never fail in equilibrium. This feature of our model arises because we consider

only deterministic technologies. A stochastic model could account for the failure of adopted

technologies.
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A. Proofs

Auxiliary Results

The following intermediate lemmas are useful to prove Theorem 1. Recall that:

x̂ ≡ min{x ∈ X : s(x) ≥ s0}.

Also, note that:

z(x, t) =
T−t∑
k=0

d(x, t+ k), (14)

= −
T−t∑
k=0

r(x+ k, t+ k). (15)

Lemma A. If z(x, t) ≥ 0, then: (a1) d(x, t) ≥ 0, (b1) z(x, t+1) ≤ z(x, t), and: (c1) z(x+1, t+1) ≥ 0.

If z(x, t) ≤ 0, then: (a2) r(x, t) ≥ 0, (b2) z(x+ 1, t+ 1) ≥ z(x, t), and: (c2) z(x, t+ 1) ≤ 0.

Proof. (a1): If z(x, t) ≥ 0, then d(x, t) is the largest summand in (14) because d(x, t+ k) decreases

with k. (b1): Since, from (14), z(x, t + 1) = z(x, t) − d(x, t), (a1) implies (b1). (c1): From (15),

z(x + 1, t + 1) = z(x, t) + r(x, t). If x ≤ x̂, then, as π(x) ≤ 0, r(x, t) ≥ 0 which gives the result.

If x > x̂, then z(x + 1, t + 1) > 0 since it is equal to a negative sum of negative values of r. (a2):

If z(x, t) ≤ 0, then r(x, t) is the largest summand in (15) because r(x, t) is decreasing in t and

non-increasing in x. (b2) As in (c1), from (15), z(x + 1, t + 1) = z(x, t) + r(x, t) and thus (a2)

implies (b2). (c2) It follows from (14), as d(x, t+ k) decreases with k.

Lemma B. Functions d, r, and z fulfill:

d. If z(x+ 1, t+ 1) ≤ 0, then 0 ≤ r(x, t+ 1) ≤ −z(x, t+ 1) and 0 ≤ r(x, t) ≤ −z(x, t).

e. If z(x, t+ 1) ≥ 0, then 0 ≤ d(x+ 1, t+ 1) ≤ z(x+ 1, t+ 1) and 0 ≤ d(x, t) ≤ z(x, t).

f. If z(x, t+ 1) ≤ 0 and z(x+ 1, t+ 1) ≥ 0, then either:

f1. z(x+ 1, t+ 2) ≥ 0 and −z(x, t+ 1) ≤ r(x, t+ 1), or:

f2. z(x+ 1, t+ 2) ≤ 0 and z(x+ 1, t+ 1) ≤ d(x+ 1, t+ 1).

Proof. The proof repeatedly uses the results from Lemma A.

(d): If z(x+ 1, t+ 1) ≤ 0 then, z(x+ 1, t+ 2) ≤ 0 by (c2). Hence, by (c1), z(x, t+ 1) ≤ 0. This,

in turn, implies that r(x, t+1) ≥ 0 by (a2). Since, from (15), z(x, t+1) = z(x+1, t+2)−r(x, t+1),

we have the first part of d. For the second part, note that, by (c1), z(x, t) ≤ 0, which, by (a2),

implies that r(x, t) ≥ 0. Since by (15), z(x, t) = z(x + 1, t + 1) − r(x, t), we have the second part

of d.
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(e): If z(x, t+1) ≥ 0 then, d(x, t+1) ≥ 0 by (a1) and z(x+1, t+2) ≥ 0 by (c1). Also, as s(·) is

non-decreasing in x, d(x+1, t+1) ≥ 0. Since, from (14), z(x+1, t+2) = z(x+1, t+1)−d(x+1, t+1),

we already have the first part of e. For the second part, note that, by (c2), z(x, t) ≥ 0, which, by

(a1), implies that d(x, t) ≥ 0. Since, by (14), z(x, t+ 1) = z(x, t)− d(x, t), we have the second part

of e.

(f1): z(x, t + 1) ≤ 0 implies, by (a2), that r(x, t + 1) ≥ 0. Since, by (15), z(x, t + 1) =

z(x+ 1, t+ 2)− r(x, t+ 1), we have f1.

(f2): z(x+ 1, t+ 1) ≥ 0 implies, by (a1), that d(x+, t+ 1) ≥ 0. Since, by (14), z(x+ 1, t+ 1) =

d(x+ 1, t+ 1) + z(x+ 1, t+ 2), we have the result.

We use throughout the following concepts. The value functions of the firms are:

π1(x, t) = max{s(x)− b̄2(x, t) + π1(x+ 1, t+ 1), π1(x, t+ 1)},

π2(x, t) = max{s2 − b̄1(x, t) + π2(x, t+ 1), π2(x+ 1, t+ 1)}.

With b̄i(x, t), i = 1, 2., we denote the maximum bidding function, i.e., the surplus firm i is willing

to transfer to the customer at state (x, t):

b̄1(x, t) = s(x) + π1(x+ 1, t+ 1)− π1(x, t+ 1), (16)

b̄2(x, t) = s2 + π2(x, t+ 1)− π2(x+ 1, t+ 1). (17)

(firm 1 sells at (x, t) if b̄1(x, t) = b̄2(x, t).)

Proof of Theorem 1

The proof is by backwards induction. Let t = T . The result is then obvious for the T +1 triangular

subarrays Ax,t for x ∈ X, i.e., terminal states of the form (·, t) for which d(·, t) = −r(·, t) = z(·, t) =

s(·)−s0. Using the maximum bidding functions, payoffs, at any non-terminal state (x, t), in a MPE

are:

π1(x, t) = max {s(x)− s0 + π1(x+ 1, t+ 1) + π2(x+ 1, t+ 1)− π2(x, t+ 1),

π1(x, t+ 1)}, (18)

π2(x, t) = max {s0 − s(x) + π2(x, t+ 1) + π1(x, t+ 1)− π1(x+ 1, t+ 1),

π2(x+ 1, t+ 1)}. (19)

Let us now consider a generic time period t. We prove that the result is true for the t+1 triangular

subarrays Ax,t for x ∈ {0, ..., t} if it is true for the t+ 2 triangular subarrays Ax,t+1, the induction

hypothesis.
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(a): If z(x + 1, t + 1) ≤ 0, we know from (d) in Lemma B, equations (7) and (8) that π1(x +

1, t+ 1) = π1(x, t+ 1) = 0 and that π2(x, t+ 1) = r(x, t+ 1). On the other hand, we have, by (a2)

in Lemma A, that r(x + 1, t + 1) ≥ 0. This, in turn, implies, by definition of function r(·, ·), that

π(x+1) ≤ 0. As π(x) is non-decreasing in x, we have that π2(x+1, t+1) ≤ r(x+1, t+1) ≤ r(x, t+1).

Plugging these into (18) and (19) gives π1(x, t) = 0 and π2(x, t) = r(x, t).

(b): If z(x, t + 1) ≥ 0, we know from (e) in Lemma B, equations (7) and (8) that π2(x, t +

1) = π2(x + 1, t + 1) = 0 and that π1(x + 1, t + 1) = d(x + 1, t + 1). On the other hand, we

have, by (a1) in Lemma A, that d(x, t + 1) ≥ 0. As d(x, ·) is non-increasing in t, we have that

π1(x, t + 1) ≤ d(x, t + 1) ≤ d(x, t). Plugging these into (18) and (19) gives π1(x, t) = d(x, t) and

π2(x, t) = 0.

(c): If z(x, t+ 1) ≤ 0 and z(x+ 1, t+ 1) ≥ 0, equations (7) and (8) say that π2(x+ 1, t+ 1) =

π1(x, t+ 1) = 0. Then either π1(x+ 1, t+ 1) = d(x+ 1, t+ 1), or π1(x+ 1, t+ 1) = z(x+ 1, t+ 1).

Let us first regard the case in which π1(x+ 1, t+ 1) = d(x+ 1, t+ 1). It follows then from equation

(7) that z(x+ 1, t+ 1) ≥ d(x+ 1, t+ 1) ≥ 0 and thus that z(x+ 1, t+ 2) ≥ 0, since z(x+ 1, t+ 2) =

z(x+1, t+1)−d(x+1, t+1). Hence, from (f1) in Lemma B, we know that π2(x, t+1) = z(x, t+1).

Plugging these into (18) and (19) gives π1(x, t) = max{d(x, t) + z(x, t + 1), 0} = max{z(x, t), 0}
and π2(x, t) = max{−z(x, t), 0} = max{r(x, t)− z(x+ 1, t+ 1), 0}. A parallel argument shows that

the same result holds when π1(x+ 1, t+ 1) = z(x+ 1, t+ 1).

The previous paragraph is not valid for t = T − 1, because state (x + 1, t + 2) is not feasible.

[It is easy to see that this problem appears if, and only if, we are at state (x̂− 1, T − 1).] We have

that π1(x̂− 1, T ) = π2(x̂, T ) = 0, π1(x̂, T ) = s(x̂)− s0, and π2(x̂− 1, T ) = s0 − s(x̂− 1). Plugging

these into (18) and (19) completes the proof.

Proof of Corollary 1

From Theorem 1, the result is obvious for the case in which t = T − 1 and for the T + 1 triangular

subarrays Ax,t for x ∈ X, i.e., terminal states of the form (·, t). Consider now a generic non-terminal

state (x, t).

(a): If z(x + 1, t + 1) ≤ 0, it follows from (a) in Theorem 1, (16) and (17) that b̄1(x, t) = s(x)

and b̄2(x, t) = s0 +[r(x, t+ 1)− π2(x+ 1, t+ 1)]. Then, b̄1(x, t) < b̄2(x, t) since s0 ≥ s(x) and, from

(a) in Theorem 1, π2(x+ 1, t+ 1) ≤ r(x+ 1, t+ 1) ≤ r(x, t+ 1).14 Thus, firm 2 will be the trading

firm at date t. Since the state moves to (x, t+ 1) and by (c2) in Lemma A, z(x+ 1, t+ 2) ≤ 0, we

have the result.

(b): If z(x, t + 1) ≥ 0, it follows from (b) in Theorem 1, (16) and (17) that b̄2(x, t) = s0 and

b̄1(x, t) = s(x) + [d(x+ 1, t+ 1)− π1(x, t+ 1)]. Then, b̄1(x, t) ≥ b̄2(x, t) since b̄1(x, t) − b̄2(x, t) =

d(x, t)− π1(x, t+ 1) and, from (b) in Theorem 1, π1(x, t+ 1) ≤ d(x, t+ 1) ≤ d(x, t). Thus, seller 1

will be the trading seller at date t. Since the state moves to (x + 1, t + 1) and by (c1) in Lemma

A, z(x+ 1, t+ 2) ≥ 0, we have the result.

14That s0 ≥ s(x) follows from π(x) ≤ 0.
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(c): If z(x, t+1) ≤ 0 and z(x+1, t+1) ≥ 0, we know from (c) in Theorem 1 that π2(x+1, t+1) =

π1(x, t+ 1) = 0. Then either π1(x+ 1, t+ 1) = d(x+ 1, t+ 1), or π1(x+ 1, t+ 1) = z(x+ 1, t+ 1).

Let us first regard the case in which π1(x + 1, t + 1) = d(x + 1, t + 1). It follows then from (c)

in Theorem 1, (16) and (17) that b̄1(x, t) = s(x) + d(x + 1, t + 1) and b̄2(x, t) = s0 + z2(x, t + 1).

Thus b̄1(x, t) − b̄2(x, t) = d(x, t) − z(x, t + 1) = z(x, t). When z(x, t) is positive, seller 1 will be

the trading seller at date t. Since the state moves to (x + 1, t + 1) and by (c1) in Lemma A,

z(x+ 1, t+ 1) ≥ 0, we have the result. Clearly, the same result holds when z(x, t) is negative and

seller 2 is the trading seller at date t. Finally, a parallel argument shows that the same result is

true when π1(x+ 1, t+ 1) = z(x+ 1, t+ 1).

Proof of Lemma 1

If the set of adopted technologies S∗ = ∅, the result holds trivially. We assume hereafter that S∗ is

non-empty. If a technology is adopted at date t, then:

π1(0, t) ≥ ε.

As S∗ is non-empty, there is a date t∗ ∈ T such that: (i) π1(0, t∗) ≥ ε; and that: (ii) π1(0, t∗) ≥
π1(0, t) ∀t ∈ T. Also, note that it must be that π1(0, 0) ≥ 0 since π1(0, 0) ≥ π1(0, t) ∀t ∈ T, by

Theorem 1.

(a): If π1(0, 0) = z(0, 0), then π1(0, t) = 0 ∀t ≥ 1, by (c) in Theorem 1. Therefore t∗ = 0.

(b): If π1(0, 0) = d(0, 0) and if, ∀t ≥ 1, π1(0, t) is smaller than ε, the result holds trivially. Thus,

let π1(0, t) ≥ ε for at least one t ≥ 1. Then, fromTheorem 1, we have that π1(0, t) ≤ d(0, t). And

as, π1(0, 0) = d(0, 0) > d(0, t) for ∀t ≥ 1, it follows that t∗ = 0.

Proof of Proposition 1

If switchover disruption costs are zero, i.e., π(0) ≥ 0, d(x, t) ≥ 0 for every state (x, t) and every

s ∈ S. Thus, z(x, t) ≥ d(x, t) for every state (x, t) and every s ∈ S. This, in turn, implies, from

Theorem 1, that π1(x, t) = d(x, t) for every s ∈ S. Hence, it follows that π1(0, 0) = d(0, 0) ≥ ε for

every s ∈ S by Assumption A3.

Proof of Proposition 2

Let s be an element of S∗, then π1(0, 0) ≥ ε. This, in turn, implies that z(0, 0) ≥ ε since, from

Theorem 1, π1(0, 0) = min {d(0, 0), z(0, 0)}. Therefore, s ∈ Nc and S∗ ⊂ Nc. Conversely, let s be

an element of Nc, then z(0, 0) ≥ ε. If π1(0, 0) = z(0, 0), then clearly s ∈ S∗. If π1(0, 0) = d(0, 0),

then s ∈ S∗ since d(0, 0) ≥ ε by Assumption A3. Hence, s ∈ S∗ and Nc ⊂ S∗. This completes the

proof.
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Proof of Proposition 3

We break the proof in two parts and several steps:

Part One (Seller 2 profits): Recall that −z(x, t) = r(x, t)− z(x+ 1, t+ 1).

Step 1 : If x = x̂ − 1, then π1(x + 1, t + 1 + k) = d(x + 1, t + 1 + k) ≥ 0 for 0 ≤ k ≤ T − (t + 1).

Since:

z(x+ 1, t+ 1) =

T−(t+1)∑
k=0

d(x+ 1, t+ 1 + k),

the proof for x = x̂− 1 is complete.

Step 2 : If z(x + 1, t + 1) < 0, we know from (d) in Lemma B and (8) that π2(x, t) = r(x, t). By

(c2) in Lemma A and (7) we know that π1(x+ 1, t+ 1 + k) = 0 for 0 ≤ k ≤ T − (t+ 1).

Step 3 : This an auxiliary result. Suppose that z(x, t) ≥ 0 and let:

k̂ = max
0≤k≤T−t

{k|z(x, t+ k) ≥ 0}.

Then z(x, t+k) ≥ d(x, t+k) ≥ 0 if k < k̂ and 0 ≤ z(x, t+k) ≤ d(x, t+k) if k = k̂. Both inequalities

come from the definition of k̂, the fact that z(x, t + k) = d(x, t + k) + z(x, t + k + 1) and (a1) in

Lemma A.

Combining these facts with Theorem 1, we get that π1(x, t+ k) is equal to d(x, t+ k) if k < k̂,

equal to z(x, t+ k̂) if k = k̂, and zero otherwise.

Step 4 : If z(x+ 1, t+ 1) ≥ 0 and x < x̂− 1, we write

z(x+ 1, t+ 1) =

k̂−1∑
l=0

d(x+ 1, t+ 1 + l) + z(x+ 1, t+ 1 + k̂),

where k̂ is the integer defined in the previous step. Combining −z(x, t) = r(x, t)− z(x+ 1, t+ 1),

Step 3 and (8), we have the result.

Part Two (Seller 1 profits): Recall that z(x, t) = d(x, t) + z(x, t+ 1).

Step 1 : If z(x, t+ 1) ≥ 0, we know from (e) in Lemma B and (7) that π1(x, t) = d(x, t). By (c1) in

Lemma A and (8) we know that π2(x+ k, t+ 1 + k) = 0 for 0 ≤ k ≤ T − (t+ 1).

Step 2 : This an auxiliary result. Suppose that z(x, t) < 0 and let:

k̂ = max
0≤k≤T−t

{k|z(x+ k, t+ k) < 0}.

Then 0 ≤ r(x + k, t + k) ≤ −z(x + k, t + k) if k < k̂ and 0 ≤ −z(x + k, t + k) ≤ r(x + k, t + k)

if k = k̂. Both inequalities come from the definition of k̂, the fact that −z(x + k, t + k) =

r(x+ k, t+ k)− z(x+ k + 1, t+ k + 1) and (a2) in Lemma A.
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Combining these facts with Theorem 1, we get that π2(x+ k, t+ k) is equal to r(x+ k, t+ k)

if k < k̂, equal to −z(x+ k, t+ k̂) if k = k̂, and zero otherwise.

Step 3 : If z(x, t+ 1) < 0, we write:

−z(x, t+ 1) =

k̂−1∑
l=0

r(x+ l, t+ 1 + l)− z(x+ k̂, t+ 1 + k̂),

where k̂ is the integer defined in the previous step. Combining z(x, t) = d(x, t) + z(x, t + 1), Step

2 and (7), we have the result.

Proof of Proposition 4

For any s ∈ S:

z(0, 1) =
T−1∑
k=0

(T − k)π(k).

≥
T−1∑
k=0

(T − k)π(0) =
1

2
T (T + 1)π(0) := −K.

If s is an element of G, then z(0, 0) = d(0, 0) + z(0, 1) ≥ d(0, 0)−K ≥ ε. If π1(0, 0) = z(0, 0), then

s ∈ S∗. If π1(0, 0) = d(0, 0), then by definition s ∈ S∗. This completes the proof.

Proof of Proposition 5

Consider any s and s′ in S. If z′−(0, 1) = z−(0, 1) = 0, we are done. Thus, assume that z′−(0, 1)

and z−(0, 1) are strictly positive and let ∆ := z′−(0, 1) − z−(0, 1). Then, as s � s′, there is a

1 ≤ k ≤ (T − 1) such that:

∆ =

k∑
x=1

(T − x)ξ(x) +

T−1∑
x=k+1

(T − x)ξ(x). (20)

ξ(1) + · · ·+ ξ(k) + ξ(k + 1) + · · ·+ ξ(T ) = 0, (21)

where empty sums are taken to be zero, ξ(x) := (π(x) − π′(x)), ξ(x) ≥ 0 for x ≤ k, and ξ(x) ≤ 0

for x ≥ k + 1. Using (21) into (20), we have:

∆ ≥ −(T − k)
T∑

x=k+1

ξ(x) +
T−1∑
x=k+1

(T − x)ξ(x),

= −
T−k∑
l=1

lξ(k + l) > 0,
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and the proof is complete.

Proof of Proposition 6

Given that by Proposition 2 there are technologies s in N with a positive social value, it suffices to

show that there are technologies in Nc with social value arbitrarily close to zero. Simply consider

a technology sν (ν > 0) with πν(0) = 0, πν(1) = · · · = πν(T ) = ν
T , and sunk cost ε. Assume that

sν has a social value arbitrarily close to zero, i.e., ν − ε arbitrarily close to zero. Then as:

zν(0, 0) =
ν

2
(T + 1) > ε,

the proof is complete.

Proof of Proposition 7

We aim to show that more technologies are adopted with three sellers than with two sellers. Since

only technologies that give positive payoffs are adopted, this is akin to show that π†1(0, 0) ≥ π1(0, 0)

for every technology s ∈ S (figures that refer to the three-seller model are denoted with †).
Because s3 ≤ s0, the equilibrium profits of seller 3 are π†3(x, t) = 0 at every state. If s3 ≤ s(0),

seller 3 is irrelevant and the three-seller model is identical to the two-seller model. Let s3 > s(0),

and define x† as

x† ≡ min{x ∈ X : s(x) ≥ s3}.

For all states such that x ≥ x†, seller 3 is irrelevant and payoffs are those given in Theorem 1. Now

we consider states with x < x†. Our proof is by backwards induction. We start with states of the

form (x† − 1, t). Define

τ(x) ≡ min{t ∈ T : π2(x+ 1, t+ 1) > 0}

if the set is not empty, and τ(x) ≡ T + 1 if π2(x+ t, t+ 1) = 0 for all t.

For all t ≥ τ(x† − 1) seller 2 makes the minimum bid in the three-seller model, just as he does

in the two-seller model, because he gets nothing out of winning the current customer. On the other

hand, because s(x† − 1) ≤ s3, seller 2 now competes with seller 3 instead of with seller 1 and thus

bids less with three sellers than with two sellers. As a consequence, the profits of the first seller in

the three-seller model remain unchanged at zero whereas the profits of the second seller go down

(or remain the same if s(x† − 1) = s3).

At state (x† − 1, τ(x† − 1) − 1) seller 1 bids the same with three sellers as with two sellers

because his profits at (future) adjacent states do not change. That is, he gets nothing if he misses

the current sale and moves to (x†, τ(x† − 1)) if he sells, were Theorem 1 still applies. However,

seller 2 now expects a lower profit from winning the current sale—for the same reason as above; he

competes now against seller 3—and gets nothing if he misses it. As a consequence, the profits of

seller 1 cannot go down and the profits of seller 2 cannot go up with three sellers.
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Two things may happen at this state. If seller 1 sells, then he will also sell at any (x†−1, t) with

t < τ(x†−1), earning the maximum profit d(x†−1, t) at each such state. This occurs because seller

2 always bids the minimum, s0, if he does not expect to win the next sale. If, on the contrary, seller

2 sells, then we must move one period backwards and see what happens at (x† − 1, τ(x† − 1)− 2).

At this state seller 1 bids the same with three sellers as with two sellers, whereas seller 2 bids

less—for the reasons we gave in the previous paragraph. Therefore, the profits of seller 1 cannot

go down, and the profits of seller 2 cannot go up, at this state. Again, two things may happen

at (x† − 1, τ(x† − 1) − 2) if seller 2 sells at (x† − 1, τ(x† − 1) − 1): either seller 1 or seller 2 sells.

The same argument above applies over and over again and we conclude that the profits of seller 1

cannot go down, and seller 2’s profits cannot go up, for any state of the form (x† − 1, t).

We now consider states of the form (x† − 2, t). Define τ †(x) as the three-seller analog of τ(x),

that is, the first t at which seller 2 gets the maximum payoff π†2(x, t) = (T + 1 − t)(s0 − s3) in

equilibrium. We have shown already that τ †(x†−1) ≥ τ(x†−1). For t ≥ τ †(x†−2), seller 2 clearly

makes no more, whereas seller 1 makes the same (zero), with three sellers than with two sellers. At

t = τ †(x†− 2)− 1, seller 1 bids more with three sellers because, as we have shown above, he always

gets more by moving to (x†− 1, τ †(x†− 2)) with three sellers than with two—because his profits at

any (x† − 1, t) are higher with three sellers. On the other hand, seller 2 makes less from winning

the current customer for the usual reason, i.e., because s(x† − 2) ≤ s3, while he makes nothing if

he misses it.

Again, two things may happen at this state. If seller 1 sells, then he also sells at all previous

periods and always earns the maximum profit π†1(x† − 2, t) = d(x† − 2, t). If seller 1 sells, however,

we must move one period backwards. At (x† − 2, τ †(x† − 1) − 2), again, seller 1 bids more with

three sellers because, as we have shown, his profits for states (x†−1, t) are larger with three sellers.

On the other hand, seller 2 gets zero if he misses the current sale and, as we have just said in the

previous paragraph, he gets less if he moves forward to (x†−2, τ †(x†−1)−1) with three sellers. The

same argument can be applied a finite number of times to show that the profits of seller 1 cannot

go down for any state of the form (x† − 1, t). The same chain of reasoning is repeated backwards

for each x† − k (k = 3, 4, . . . ).

Finally, note that, at each step, the change in seller 1’s payoffs occurs because the maximum

payoff of seller 2, π†2(x, t) = (T + 1 − t)(s0 − s3), goes down with s3. Therefore, the payoff of

seller 1 is non-decreasing in s3, with a minimum π†1(0, 0) = π1(0, 0) at s3 = s(0), and a maximum

π†1(0, 0) = d(0, 0) at s3 = s0.
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