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ORDER OF ENTRY ADVANTAGES IN NATURAL RESOURCES 

INDUSTRIES 

ABSTRACT 

This paper expands order of entry advantage theory by applying it to natural 

resources industries. In these industries, firms can take advantage of the oscillation of 

relative prices to strategically switch between serving different markets. Using a game 

theory decision-making framework, we model the entry timing of two cohorts of 

competitors: a crowd group, which makes the entry decision based on current market 

prices, and an anti-crowd group, which follows a countercyclical strategy by 

forecasting future prices using information related to competitors’ movements. 

Through a mathematical simulation, we determine that the first-mover advantage 

captured by the anti-crowd group increases with the number of competitors in the 

industry and/or their price sensitivity, and decreases with the time required to switch 

between markets. These results do not depend on the existence of traditional 

competitive isolating mechanisms. 
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Scholars in the strategic management field have long been concerned with the 

question of whether firms can create competitive advantages by strategically timing 

their entry into new markets (Lieberman & Montgomery, 2013; Makadok, 1998; 

Zachary, Gianiodis, Payne, & Markman, 2014). A significant body of research agrees 

that order of entry competitive advantage emerges as the result of the existence of 

competitive isolating mechanisms, which are contingent on contextual conditions 

(Lieberman & Montgomery, 1988; Mueller, 1997; Suárez & Lanzolla, 2007; Zachary 

et al., 2014). However, it is still unclear how and under what conditions order of entry 

matters (Zachary et al., 2014), since the theory has been unable to sort out conflicting 

empirical evidence and provide managers with coherent guidelines (Suárez & Lanzolla, 

2007).  

Theory on order of entry advantages has to resolve two fundamental challenges. 

First, new market emergence is a rare occurrence and context parameters are often too 

unique to allow meaningful comparisons across new markets (Klingebiel & Joseph, 

2016; Lieberman & Montgomery, 2013). Second, order of entry advantage is a macro 

concept combining a variety of specific mechanisms; arguably, these should be studied 

individually (Lieberman & Montgomery, 2013). We explore these limitations in a 

particular context: natural resources industries. These cyclical industries are built 

around particular natural resources (e.g. agriculture, mining, oil) and face a highly 

competitive commodity market. In this context, firms can take advantage of the 

oscillation of relative prices to switch between serving different markets. Therefore, 

firms have multiple opportunities to enter and exit particular markets, allowing us to 

better understand the mechanisms leading to order of entry advantages. Our analysis is 

relevant not only from a theoretical standpoint, but also for the business community, 

since natural resources represent around one third of global exports, and national 
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economic activity in most emerging economies and several developed countries 

depends heavily on natural resources industries. 

We design an entry game (Cavagna, 1998; Challet & Zhang, 1998; Lo, Hui, & 

Johnson, 2000) in which a small fraction of competitors within an industry consistently 

aims to remain  in the minority, entering underserved markets long before the prices in 

these markets reach their maximum values. As the game progresses, non-trivial cyclical 

fluctuations arise from competitors’ collective decisions, which are generated by the 

dynamic formation of a crowd group, consisting of competitors using cyclical 

strategies, and an anti-crowd group, consisting of competitors using anticyclical 

strategies. The repeated recurrence of timing decisions in this setting makes it easier to 

study the nature of order of entry advantages (Klingebiel & Joseph, 2016).  

To explore this unique competitive dynamic, we use game theory lenses to 

develop a mathematical simulation model that mimics the behavior of the market 

participants. We define two different groups of competitors that use contrasting 

strategies. The majority group (“the crowd”) makes market entry decisions by 

analyzing current average prices; the minority group (“the anti-crowd”) analyzes 

current prices but also forecasts future price levels by taking into account the number 

of competitors that are currently moving from one market to the other. Our work reveals 

that anti-crowd competitors can gain an order of entry advantage and capture abnormal 

returns under certain conditions: when (1) setup time decreases, (2) competitors’ price 

sensitivity increases, and (3) the number of competitors increases. 

Our research provides several contributions. First, we contribute to the order of 

entry literature by analyzing a situation with multiple opportunities to enter and exit the 

same markets, allowing us to develop fine-grained mechanisms of advantages. We also 

describe a particular approach for creating a competitive advantage that does not 
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depend on competitive isolating mechanisms: decision-making based on competitors’ 

behavior. Moreover, our focus on natural resources industries fills a gap in the strategy 

literature, where these industries have received limited attention to date and 

consequently represent a rich area for further enquiry (George, Schillebeeckx, & Liak, 

2015). We also address recent calls to advance order of entry theory by examining the 

relationship between successive market entry, entry timing strategies and firm 

performance through by means of a parametrized model. Finally, we contribute by 

applying game theory to strategy.  

The rest of the paper is organized as follows: we first identify the main 

environmental variables that enable entry order advantages in natural resources 

industries. We then propose a mathematical simulation model to represent the 

competitive dynamics of a market in which a certain number of competitors follows a 

price-countercyclical strategy, reporting results and advancing theoretical propositions. 

We conclude by discussing the study’s implications as well as its limitations. 

ANTECEDENTS AND THEORETICAL INSIGHTS 

The entry order advantage literature explores the potential competitive 

advantages for pioneers – firms that enter an industry in its infancy – or early movers, 

who enter just after the industry takes off (Echambadi, Bayus, & Agarwal, 2008). The 

main risk for pioneers is entering too early due to product underdevelopment or a lack 

of consumer demand for the new product or service (Min, Kalwani, & Robinson, 2006). 

Moreover, while industry standards are still in flux, pioneers might become trapped in 

a product design that customers do not want (Min et al., 2006). On the other hand, the 

risk for early movers is entering the market too late to catch up with the pioneers if the 

initial product design is successful. The two approaches result in different levels of 
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uncertainty and multiple interdependent decision options among competitors, leading 

to different strategic recommendations. 

A fundamental element of the concept of entry order advantage is the 

interdependence of firms’ decisions, which generates an opportunity window. The 

existence of an opportunity window for any given firm relates directly to the strategic 

moves of the rest of the competitors in an industry. The basic mechanism that allows 

early movers to build order of entry advantages is the path-dependent nature of isolating 

mechanisms. For example, if competitors can benefit from learning economies, early 

movers decrease unit costs in a cumulative fashion, giving late entrants a strong 

competitive disadvantage. The same rationale can be extended to network externalities. 

Firms that build a community of users (e.g., competitors in operating systems or 

competitors in e-commerce) achieve a cumulative advantage that is very difficult for 

late movers to reverse. The typical competitive dynamics in an industry generate a long-

term decline in real prices due to increasing rivalry, which raises pressures on unit 

margins (Klepper, 1996, 1997). As real prices fall, the strength of the isolating 

mechanism increases, eventually forcing late entrants either to exit the industry or to 

occupy a niche position (Agarwal, Sarkar, & Echambadi, 2002; Suárez & Lanzolla, 

2007). 

For multiple industries this type of opportunity window opens just once in the 

entire industry life cycle, and those companies that miss it face severe competitive 

disadvantages. Environmental conditions might amplify or diminish the length of the 

opportunity window and the difficulty of entering into the industry during this period 

(Suárez & Lanzolla, 2007). The pace of market evolution and technology evolution can 

also affect the sustainability of the isolating mechanism. When they evolve gradually, 

the effect of isolating mechanisms will be the strongest; when environmental variables 
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they are volatile (i.e., high-velocity environments), the effect of the isolating 

mechanism substantially decreases (Suárez & Lanzolla, 2007). 

However, not every industry fits the main assumptions of this analysis: in 

natural resources industries, the product is usually a commodity with a minor or almost 

non-existent evolution along time, the markets are generally slow paced, and 

technology disruptions are scarce. Prices fluctuate in cycles, alternating between 

periods of high and low unit margins without following a clear long-term trend (Erten 

& Ocampo, 2013; Jacks, 2013). Moreover, while isolating mechanisms exist in several 

natural resources industries in the form of scale economies, several of these industries 

present high levels of atomization, sustaining hundreds or thousands of competitors for 

decades (e.g., agriculture). We ask the fundamental question: does order of entry 

advantage hold in this context? In particular, is it possible to observe an opportunity 

window that leads to a competitive advantage? If so, how do successful competitors 

handle such an opportunity window? 

We take advantage of game theory to address these questions. Interdependence 

is a central theoretical theme of game theory, which makes this approach particularly 

suitable for our analysis (Camerer, 1991). We frame our analysis around the game of 

deciding to join one of two groups of competitors in an industry: the crowd group or 

the anti-crowd group (Cavagna, 1998; Challet & Zhang, 1998; Lo et al., 2000). An odd 

number N of competitors successively compete to join the anti-crowd group. We 

randomly assign several strategies to each agent at the beginning of the game, 

introducing some quenched disorder. As the game progresses, non-trivial fluctuations 

arise in competitors’ collective decisions. These can be understood in terms of the 

dynamic formation of a crowd group, consisting of competitors using cyclical 
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strategies, and an anti-crowd group, consisting of competitors using anticyclical 

strategies.  

Anti-crowd competitors following an anticyclical strategy face a fundamental 

trade-off, sacrificing revenue in the short run for the opportunity to possibly earn higher 

revenue in the long run. However, the potential for higher revenue in the long run 

depends on the number of competitors that follow a cyclical strategy; that is, future 

revenue is contingent on other competitors’ decisions and uncertain. Given this 

uncertainty, the majority of competitors – the crowd group – place a higher value on 

short-run revenue and choose to follow cyclical strategies. These two distinct decision-

making strategies affect the order of entry into the market, which in turn determines 

cumulative performance. Anti-crowd competitors will seek to achieve order of entry 

advantages, entering a market when demand and prices are low. Crowd competitors, on 

the other hand, will wait until demand and prices rise before entering.   

Like most analyses of order of entry advantage, this process is subject to various 

contingencies (Suárez & Lanzolla, 2007; Zachary et al., 2014). Given that order of entry 

advantage is a dynamic concept, it is best specified through interactions rather than 

direct effects (Lieberman & Montgomery, 2013). We focus on three important 

environmental enablers: technological conditions, environmental dynamism, and 

rivalry level, which are represented in our model, respectively, by the following 

measurable variables: the time required to switch between markets –setup time-, the 

competitors’ price sensitivity and the number of competitors in the industry, 

respectively. Environmental dynamism is a fundamental factor in order of entry 

competition (Suárez & Lanzolla, 2007). For the game setting, this dynamism depends 

on the sensitivity that crowd and anti-crowd competitors have to shift among markets, 

since the aggregate market change will eventually result in supply and price alterations 
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(Erten & Ocampo, 2013; Jacks, 2013), influencing endogenously the commodity cycle.  

This pattern affects market munificence irrespective of the number of competitors, 

since cycles can be driven by external factors, such as behavior of financial commodity 

markets and macroeconomic growth (Cortazar, Kovacevic, & Schwartz, 2015; Mayer, 

2009). We expect that the commodity cycle will impact the respective value of crowd 

and anti-crowd strategies.  

Technological conditions can also affect the relative success of crowd and anti-

crowd competitors, since, in this game, firms’ market entry decisions are affected by 

the setup time required to start selling in the new market. Depending on the 

technological context, this setup time might be shorter, decreasing the duration of  non-

revenue periods.  

Finally, competitive conditions –rivalry level-influence the level of market 

munificence, which in turn affects the value of order of entry strategies. In particular, 

when the value of being first stems from the opportunity to achieve higher margins in 

a crowded market, the number of competitors present in the industry catalyzes potential 

gains. Figure 1 describes the conceptual framework.  

----------------------------------------------- 

INSERT FIGURE 1 ABOUT HERE 

  ----------------------------------------------- 

Based on this framework, we specify variables and relationships to gain insight 

into competitive dynamics. The expected relationships are non-trivial given the 

endogenous nature of the price-quantity cycle. In our case, entrants change their 

strategy in response to market conditions, while market conditions shift as a result of 

entry decisions. For that reason, we develop a mathematical simulation model and, 

subsequently, build a theory offering several propositions. 

MATHEMATICAL SIMULATION 
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Mathematical simulation is a useful methodological approach that helps in 

developing theory and bridging the gap between the main constructs and relationships 

and the empirical grounding of an analysis (Davis, Eisenhardt, & Bingham, 2007; 

Harrison, Lin, Carroll, & Carley, 2007; Simon, 1990). We are interested in how order 

of entry affects competitive advantage in a cyclical industry with no product 

differentiation or any type of competitive isolating mechanisms where prices are 

endogenous to competitors’ investment decisions. Accordingly, we define a game that 

describes a system of multiple, interrelated agents in a path-dependent context under a 

cobweb process. The stochastic nature of these processes and interrelationships 

generates mathematical intractability that inhibits the possibility of finding an 

analytical solution. Therefore, we opt for a mathematical simulation – a powerful tool 

for advancing theory on complex behaviors and systems when derivations cannot be 

carried out due to mathematical intractability (Davis et al., 2007; Harrison et al., 2007). 

In addition, a mathematical simulation is appropriate for analyzing competitive 

dynamics when the market is conceived as an open complex system and the economic 

agents—i.e., individual firms—are interrelated with each other in that system (Dopfer, 

2004).  

Computer simulations permit us to capture greater variance as they account for 

large periods of the commodity cycle. In this vein, adequate tools can include the 

heterogeneous composition of strategic decisions, the possibility of multilevel feedback 

effects or interactions and a realistic representation of dynamic processes in an 

industry’s history. Simulations also allow to formulate powerful predictions for further 

empirical testing and to test boundary conditions for prior theorizing (Pyka & Fagiolo, 

2007). 



 10 

We generate an agent-based stochastic model with a discrete time design. We 

keep the model design straightforward, following the rule that the simpler the model, 

the easier it is to gain insight into the causal processes at work (Harrison et al., 2007; 

Raghu, Sen, & Rao, 2003; Simon, 1990). We describe the mathematical structure of 

the model below.  

Market. The model simulates a standard cobweb situation with N competitors that are 

price takers in two markets (i) for two undifferentiated products A and B. Each market 

faces a linear downward demand function 𝑃𝑖𝑡 = 𝐷(𝑄𝑖𝑡). For simplicity’s sake, both 

demand functions have the same shape parameters. The basic model starts with the N 

competitors distributed between both markets. Some of them are already in the process 

of switching from A to B (𝑆𝐴𝐵) and others are switching from B to A (𝑆𝐵𝐴). The market 

and the firms have no storage capability, and production level is zero when a competitor 

is in the process of switching from one market to the other. Therefore, the resulting 

price only depends on the quantity supplied by A and B producers. 

Production Process. Firms own an asset capable of generating two different products 

A and B. However, this asset cannot produce both products simultaneously, forcing 

decision makers to choose one of the two. This situation is typical of commodity 

industries where land is the primary asset, such as agricultural products, wine, fruits, 

cattle and milk production. Firms have a given productivity. The asset determines the 

production capacity, which remains fixed along the simulation. All of the producers 

have the same size and productivity, variables that remain unchanged during the 

complete simulation period. In every period, all of the production is sold at market 

prices; none is carried over to the next period. In this setting, competitors are not able 

to build demand- or supply-side isolating mechanisms.  



 11 

Firms have a setup time that determines the time to market when they decide to 

enter a new market. In agriculture, it is common to observe a time lag – based on 

biological constraints – between planting and reaching full production (McCullough, 

Huffaker, & Marsh, 2012; Nicholson & Stephenson, 2015). Oil and mining are other 

examples of commodity industries with setup times, due to the necessary time 

investment in discovery, exploration and development activities (Favero, Hashem 

Pesaran, & Sharma, 1994; Łucki & Szkutnik, 1990).  

Profit. Agents can choose to produce and sell the current product or invest in a new 

product given price and production expectations. Producing and selling the current 

product – following the crowd strategy – will yield positive profit, whereas investing 

in the other product – following the anti-crowd strategy – will yield zero profit.  

The model has a standard variable cost function. There are no learning 

economies and no scale economies, since all the producers are of the same size and 

produce at full capacity. The variable costs are yearly production costs and, for 

simplicity, remain the same for both types of product. While a producer is in the process 

of switching production from one product to the other, no revenue is generated and only 

maintenance costs are paid. The standard profit function for a firm i in time t is: 

𝜋𝑖𝑡 = (𝑃𝑗𝑡 − 𝑐𝑗𝑡)𝑄𝑗𝑡      (1) 

where cjt represents the variable cost of product j at time t. The variable cost is the 

weighted average of each product unit cost. The value of 𝑄𝑗𝑡is 1 when the competitor 

is in production, and 0 otherwise. All competitors have the same amount of production 

when they are not switching from one product to another.  

Performance. The existence of an order of entry competitive advantage should result 

in superior cumulative performance. Several elements affect performance: average 

prices, production setup time, and the total number of competitors.  We compute the 



 12 

cumulative performance for each group of agents in the straightforward form of 

cumulative profit 𝐶𝑃𝑖 = ∑ 𝜋𝑖𝑡
𝑇
𝑡=1 . Since the model does not impose a limit to temporary 

losses, it implicitly assumes perfect financial markets that can finance transitory losses. 

We verify the amount of the cumulative losses to address the reasonableness of this 

assumption. 

Decision Rule for Crowd and Anti-crowd Competitors. Decision-making is a 

fundamental antecedent in explaining order of entry advantages (Zachary et al., 2014). 

In the model, the main decision a producer has to make is whether to continue 

producing and selling the current product or switch to the alternative product, knowing 

that there exists a production setup time that imposes a lag between the decision to 

switch and the moment when the new product is sold.  

The model defines two groups of competitors: crowd (CR) and anti-crowd (AC). 

Both groups of competitors have bounded rationality regarding the future but one group 

decides with a different set of information. CR competitors decide by looking at current 

prices while AC competitors look at current prices and at the current change rate of 

competitors from one product to the other. Therefore, 𝑄𝐶𝑅𝑡 = 𝑓(𝑃𝐴𝑡, 𝑃𝐵𝑡)  for CR 

competitors and 𝑄𝐴𝐶𝑡 = 𝑓(𝑃𝐴𝑡, 𝑃𝐵𝑡, 𝑆𝐴𝐵, 𝑆𝐵𝐴 ) for AC competitors. 

The decision to switch depends on the relative prices and the producers’ 

sensitivity to change. A CR competitor that is producing A will remain there if  

𝜆
(

𝑃𝐴𝑡(𝑄𝐴𝑡)−𝑃𝐵𝑡(𝑄𝐵𝑡)
𝑃𝐵𝑡(𝑄𝐵𝑡)

)

𝜆−1
> 𝑅𝑁𝐷     (2) 

where  is the change factor (the propensity to change products), and RND is a random 

number that follows a uniform distribution [0,1]. If the condition defined in (2) is not 

achieved, the CR competitor will begin switching production from A to B. An AC 

competitor producing A will continue doing so if 
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𝜆
(

𝑃𝐴𝑡(𝑄𝐴𝑡+Δ𝐵𝐴)−𝑃𝐵𝑡(𝑄𝐵𝑡+Δ𝐴𝐵)
𝑃𝐵𝑡(𝑄𝐵𝑡+Δ𝐴𝐵)

)

𝜆−1
> 𝑅𝑁𝐷   (3) 

Where Δ𝐵𝐴 = ∑ 𝑘𝑠𝑄𝑠
𝑛
1  indicates the number of producers that have already switched 

from B to A and will be entering into production after the next n years (n refers to the 

production setup time). If the condition defined in (3) is not achieved, the AC 

competitor will begin switching from A to B. The CR and AC competitors that switch 

production from product B to product A are parametrized in analogous ways, although 

the equations are not listed here. 

The objective of anti-crowd competitors is to play anticyclically and begin 

producing when the prices of a product are highest, thus maximizing long-term 

revenues. Both types of competitors have the same level 𝜆 of sensitivity to change. 

Lower levels of 𝜆 are indicative of higher sensibility to change, i.e. competitors are 

more prone to change markets. 

The switching process from one product to the other has restrictions given the 

cumulative profits of the individual producer. A producer that has cumulative losses 

cannot afford further losses and must wait until prices improve to switch markets. That 

is, firms that have several years of cumulative losses cannot afford to forgo immediate 

revenue to attempt to capture higher future revenue with the alternative product. 

Additionally, in an effort to replicate behavior observed in the real world, the maximum 

number of competitors switching products at the aggregate level is also limited, so even 

in extreme conditions, some producers do not change markets.  

The initial number of CR and AC competitors is randomly assigned at the 

beginning of the simulation and remains constant. AC competitors are a minority. As 

the game evolves, we expect AC competitors to group into one product while the CR 

competitors remain evenly distributed between both products. 
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Parameters and Runs. We program the model in Java and solve it with Monte Carlo 

simulation. A fundamental decision in mathematical simulation models is to determine 

parameters to ensure a realistic grounding. Accordingly, we choose Australian grape 

farming as the reference model, focusing on red and white grape production. Table I 

reports the model parameters for the base case. The simulation runs for 100 periods 

with a warm up time of 10 periods, with 70 replications. Figure 2 outlines the model 

decision tree. 

------------------------------------------------------------------- 

INSERT FIGURE 2 AND TABLE I ABOUT HERE 

  -------------------------------------------------------------------- 

 

SIMULATION RESULTS AND PROPOSITIONS 

The model renders a cobweb process that generates a system of cyclical prices, 

resulting in a continuous movement of producers from one product to the other. Figure 

3 presents the price and production dynamics in each market. Prices behave in a cyclical 

fashion that is negatively correlated with the total market quantity. This market 

structure generates a price cycle like the one observed in commodities (Erten & 

Ocampo, 2013), which becomes a key process affecting performance (Nicholson & 

Stephenson, 2015). The price cycle oscillates between 2 and 8 years, similar to what 

has been observed for wine grapes, fruits, grains (Jacks, 2013), cattle (Mundlak & 

Huang, 1996), and the milk industry (Hunt & Kern, 2012). The aggregate market 

quantities mirror price behavior, given that boundary conditions imposed by the model 

fix the total demand and the number of competitors all along the simulation. 

     ------------------------------------------------- 

    INSERT FIGURE 3 ABOUT HERE 

  ------------------------------------------------- 

It is worth noting that the price cycle lasts longer than the setup time, although 

this relationship between both variables varies across industries. For example, 

biological restrictions in the cattle industry impose a minimum two-year lag between 
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gestation and the sale of a heifer in the market, but the price cycle lasts around 10 years 

in the US.  

The Effect of an Anti-crowd Strategy on Order of Entry Sustainable Advantage.  

The fundamental determinant of performance in natural resources industries is 

market timing, which eventually leads to an order of entry competitive advantage. The 

existence of a period between the decision to switch from one type of product to another 

and the moment of full production generates opportunities for arbitrage. The key feature 

of this competitive framework is the absence of competitive isolating mechanisms. 

Competitors gain an advantage from strategically timing market entry, but this 

advantage is temporary, until imitation pressures push prices downward. The basic 

trade-off anti-crowd players face is between certain short-term losses and uncertain 

long-term gains. Short-term losses result from the decision to stop producing and 

selling a higher-priced product during the transition period until the new product enters 

into full production. Long-term gains may eventually result from the higher prices the 

anti-crowd competitor can charge after beginning to produce the new product and 

before crowd competitors enter the market.  

The determinant of market timing and, consequently, of competitive advantage, 

is the type of information competitors base their market entry decisions on – either 

prices or production and prices. Since crowd competitors look only at prices, they 

behave cyclically. Anti-crowd competitors, who also take into account other 

competitors’ investments in the new product, tend to behave countercyclically. The 

endogeneity of the aggregate production cycle gives producers incentives to expand 

their sources of information. At the individual level, competitors cannot alter market 

prices, but when their decisions are aggregated, they generate supply changes at the 
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industry level. The two distinct decision rules generate an intertemporal disequilibrium 

in the market.  

Figure 4 reports the results of two cumulative profits simulations for the basic 

case, with just one differing parameter: the competitors’ sensitivity to market price 

movements. Figure 4a depicts low sensitivity and Figure B shows high sensitivity.  We 

observe that the anti-crowd strategy is not always successful. Depending on multiple 

factors, such as competitors’ sensitivity to prices, setup time, the total number of 

competitors and the percentage of anti-crowd competitors present in the market, results 

will vary. In fact, in most cases, the crowd group’s mean profit is higher than those of 

the anti-crowd group, as shown in Figure 4a. Even when the anti-crowd strategy 

outperforms the crowd strategy in the long run (Figure 4b), their short- and medium-

term results are indistinguishable. Therefore, we argue that anti-crowd competitors can 

potentially achieve higher abnormal returns than crowd competitors, but any such 

outperformance is contingent on several factors. 

----------------------------------------------- 

INSERT FIGURE 4 ABOUT HERE 

  ----------------------------------------------- 

The potential for anti-crowd competitors to outperform their counterparts stems 

from their ability to detect an increase in the number of firms entering the more 

attractive market (i.e. the market with higher product prices). As the number of 

competitors increases, prices begin to decline. Beyond a certain threshold, anti-crowd 

competitors switch to the product with lower prices. They forgo revenue during a 

temporary setup period, but this loss is eventually compensated by higher revenues 

from the new market, which had been previously abandoned by the crowd. Therefore,  

under certain conditions, anti-crowd competitors outperform crowd competitors. 

Consequently, we propose that: 
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Proposition 1a: Firms following an anti-crowd strategy can achieve an order 

of entry competitive advantage when competing in cyclical industries. 

Proposition 1b: Firms competing in cyclical industries can achieve order of 

entry advantages even in the absence of competitive isolating mechanisms.  

We show the possibility of an anti-crowd strategy as a source of first-mover 

competitive advantage in the absence of isolating mechanisms. However, the 

conditions that allow such an advantage to develop remain loosely defined. Therefore, 

in order to fine-tune the mechanisms leading to order of entry advantages, we analyze 

the effect of three factors –setup time, competitors’ price sensibility and the number of 

competitors in the industry- on anti-crowd performance. 

Setup time affects price volatility: the longer it takes a producer to enter a 

market, the longer it will take for prices in that market to react. Once competitors reach 

their productive state, market prices will adjust downward. In various natural resources 

industries, this setup time reflects natural limitations, which have been identified as an 

endogenous source of market disequilibrium and price oscillation (McCullough et al., 

2012).  

Producers’ price sensitivity also affects the price gap between markets. As price 

sensitivity surges, so does the switch rate between markets, producing a stampede effect 

that increases the price gap. The concept of price sensitivity captures the cognitive 

determinants of time-to-market – i.e. the propensity to behave countercyclically 

(Hamilton & Kastens, 2000). 

Finally, the number of competitors affects price volatility and the price gap 

between markets: as more competitors interact in the market, more of them switch from 

one market to the other. Additionally, a higher number of competitors boosts the value 
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and potential gains of an anti-crowd strategy, as the crowd competitors focus just on 

one product, increasing volatility and reducing prices in that market. 

In order to better understand the mechanisms leading to order of entry 

competitive advantage, we isolate the effect of each factor in the subsequent sections.  

The Effect of Technological Conditions. 

A fundamental friction in many markets is the setup time between the decision 

to enter a market and the moment of full production. This situation is typical in most 

natural resources industries, ranging from petroleum to agriculture. A vineyard needs 

around three years to start producing quality grapes, and it can be up to another three 

years before the wines have aged properly and are ready for the marketplace. The setup 

time is similar for several fruits, such as apples and avocados. In mining, the production 

setup time ranges from 7 to 20 years. Because depending on the technological context 

setup time will vary, we use this variable as a proxy to measure technological 

conditions. 

We explore to what extent changes in setup time enhance or decrease the value 

of an anti-crowd strategy. The setup time determines the number of periods of zero 

revenue. A jump in the setup time increases industry coordination problems: anti-crowd 

competitors face a higher opportunity cost of exiting the most profitable market, while 

crowd competitors face future longer periods of high prices. A drop in the setup time, 

given that anti-crowd competitors are in the minority, favors their strategy since they 

will be able to enjoy a first-mover advantage in future while minimizing losses 

stemming from the decision to switch markets. Additionally, since setup time affects 

crowd and anti-crowd competitors equally, a shorter setup time encourages a 

bandwagon effect, as crowd competitors switch markets faster and more frequently to 
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benefit from higher prices. This increases market volatility and consequently, expands 

the opportunities for anti-crowd competitors to earn abnormal revenues. 

Figure 5 shows the crossed impact of price sensitivity, setup time and total 

number of competitors on anti-crowd performance. Anti-crowd performance is 

measured relative to that of the crowd group; it is calculated as the profit difference 

between the two groups as a percentage of the average profit. The observed relationship 

among factors is nonlinear. The setup time ranges from 1 to 4 years; the competitors’ 

price sensitivity, measured as ln(Change Factor), varies from 10 (low sensitivity, 

Change Factor=100) to -10 (high sensitivity, Change Factor=0.01); the total number of 

producers ranges from 2000 to 7700. In Figure 5b, we observe that setup time barely 

affects anti-crowd performance. However, a shorter setup time makes it possible for 

anti-crowd competitors to outperform the crowd group even in a context of lower 

volatility. From Figure 5c, we can observe that the anti-crowd performance is highest 

for short setup times in a competitive market (high number of competitors). In general, 

the effect of setup time is flatter and less significant than the effect of market 

competitiveness and competitors’ price sensitivity.  

----------------------------------------------- 

INSERT FIGURE 5 ABOUT HERE 

  ----------------------------------------------- 

Therefore, we propose that: 

Proposition 2a: The longer the setup time between the decision to enter a 

market and the first product sold, the lower the margins of both crowd and anti-

crowd competitors. 

Proposition 2b. The advantage of following an anti-crowd strategy increases as 

setup time decreases. 

The Effect of Environmental Dynamism. 
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It is known that environmental dynamism influences order of entry advantages 

in industries with isolating mechanisms in place (Suárez & Lanzolla, 2007). We 

examine to what extent environmental dynamism affects order of entry advantages in 

the absence of isolating mechanisms. In our analysis, this dynamism depends on the 

competitors’ propensity to switch markets, since the aggregate combination of market 

changes ultimately generates endogenous environmental instability in the form of 

supply and price cycles. This endogenous volatility is defined in the model as 

competitors’ price sensitivity. Competitors differ in their price sensitivity, that is, in 

their willingness to switch markets when relative prices change. Lower sensitivity –

competitors are less likely to switch markets- might reflect higher risk aversion, a more 

long-term orientation, or the expectation that the price cycle will last longer (i.e., the 

assumption that other competitors will react slowly to price changes).  

Figure 3 shows the endogenous nature of cycles, with prices behaving in a 

cyclical and negatively correlated fashion. Low price sensitivity among competitors is 

associated with less extreme price oscillation. Aggregate production mirrors this 

behavior in an inverse manner. Figures 5a and 5b illustrate the effect of price sensitivity 

on the mean difference in profit between the anti-crowd and the crowd groups. When 

the change factor declines, price variability increases, which generates a positive effect 

on anti-crowd performance. Interestingly, not every change factor value allows for a 

window of opportunity for anti-crowd competitors. In fact, we observe that when 

ln(Change Factor) is greater than -5, the crowd group always outperforms the anti-

crowd group, regardless of the value of the other factors. This occurs because, as the 

price sensitivity rises, so does the probability that the crowd competitors remain in or 

move to the market with the higher prices. As the cycle reverses and prices fall, crowd 

competitors react swiftly, intensifying the cycle amplitude. As the cycle’s amplitude 
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rises, so does the opportunity for anti-crowd competitors to get higher gains.  Thus, we 

suggest that: 

Proposition 3: The higher the sensitivity of competitors to changes in relative 

prices, the greater the advantage of following an anti-crowd strategy. 

 

The Effect of Competitive Conditions. 

Competitive conditions are a well-established contingency to order of entry 

advantages (Baum & Korn, 1999; Fuentelsaz, Gomez, & Polo, 2002; Zachary et al., 

2014). However, not all theories make the same predictions when entering into highly 

competitive markets. For instance, oligopoly theory establishes that markets with low 

rivalry are not attractive for new entrants since the existing competitors can coordinate 

their actions to prevent entry (Sherer & Ross, 1990). Furthermore, a high level of rivalry 

can be indicative of a market with opportunities for high profits. On the other hand, the 

contestable markets theory does not recognize any significant effect of market 

concentration on firm performance. Finally, according to Mitchell, (1989), when rivalry 

levels are high, incumbents may react to new threats, reducing the profitability of new 

entrants. For industries with homogenous products, including natural resources 

industries, rivalry is inversely proportional to the number of competitors. In this 

context, we recognize two potential effects of the number of competitors on anti-crowd 

group performance. On one hand, when more competitors interact in the market, there 

is a higher likelihood of producers switching from one market to the other, diminishing 

the opportunity to follow a successful minority anti-crowd strategy. But at the same 

time, and assuming a generalized risk aversion that is asymmetric between the crowd 

and anti-crowd strategy populations, we expect the crowd group to expand, reducing 

market prices, increasing the price volatility, and thus, boosting potential gains for the 

anti-crowd group. In Figures 5a and 5c, we can observe that, as the number of 
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competitors increases, the performance of the anti-crowd group improves. 

Nevertheless, this positive effect is limited to markets with high rivalry. In the base case 

simulation shown in Figure 5, it is only when the total number of producers is greater 

than 5000 that anti-crowd competitors have a window of opportunity to outperform 

crowd competitors. Below this number, crowd competitors perform better. 

Remarkably, a highly competitive market does not assure a successful anti-crowd 

strategy; the potential success of such a strategy also depends on the interrelated factors 

of price sensitivity and setup time.Thus, we argue that: 

Proposition 4a: The greater the number of competitors in an industry with cost 

competition, no product differentiation, and no substitute products, the lower 

the advantage of following any strategy, crowd or anti-crowd. 

Proposition 4b: As the number of competitors increases, so does the value of an 

anti-crowd strategy, since crowd competitors tend to focus on one product. 

The Impact of the Anti-Crowd Group Size. 

There is one more relevant element to consider: the percentage of anti-crowd 

competitors in the market. We do not classify this as a factor since one of the game’s 

conditions specifies that anti-crowd competitors must remain in the minority, 

effectively limiting their number. However, we can ask: What is the maximum size of 

the anti-crowd group that still plausibly allows the competitors in this group to 

outperform the crowd?  Figure 6 answers that question by depicting the sensitivity of 

anti-crowd performance to the percentage of anti-crowd competitors (relative to the 

total number of competitors) and the main contingency factors (price sensitivity, setup 

time and total number of producers). 

----------------------------------------------- 

INSERT FIGURE 6 ABOUT HERE 

  ----------------------------------------------- 



 23 

Of the three charts included in Figure 6, Figure 6b shows the least restrictive 

conditions. In other words, there is a wide range of possible values for the percentage 

of anti-crowd competitors that allows for a positive anti-crowd performance, 

independent of the setup time. Nonetheless, if the proportion of anti-crowd producers 

exceeds 50%, crowd competitors perform better. In Figure 6a, we observe that the anti-

crowd strategy is only feasible when fewer than 15% of the competitors fall into the 

anti-crowd group and price sensitivity is high. We find a similar effect in Figure 6c: the 

anti-crowd strategy is only effective when fewer than 15% of competitors follow it.  

Across all of the charts in Figure 6, potential gains for anti-crowd competitors 

vanish as the number of members in their group increases. There are two reasons for 

this: First, it is not possible to follow a countercyclical strategy if a substantial group of 

competitors is following the same strategy. Second, producers’ aggregate decisions 

affect the commodity cycle, reducing prices and thus cutting into first movers’ 

revenues. Accordingly, we propose that: 

Proposition 5: As the number of anti-crowd competitors increases, the 

advantage of an anti-crowd strategy decreases. 

DISCUSSION  

We analyze the extent to which order of entry in cyclical industries without 

isolating mechanisms can generate a competitive advantage. Companies competing in 

natural resources industries under the aforementioned conditions face a fundamental 

trade-off between exploiting prevailing high prices for a particular product and making 

investments in order to exploit future high prices for an alternative product.  

We propose an early mover advantage that is independent of traditional 

isolating mechanisms. Antecedents illustrate the existence of a one-time opportunity 

window that favors a sustainable competitive advantage for early entrants. In contrast, 
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we highlight the existence of repeated opportunity windows based on the oscillation of 

commodity prices. Companies have the strategic option to use this oscillation to build 

a sustainable competitive advantage, which is related not to the existence of isolating 

mechanisms but to aggregate supply. Importantly, our framework is also applicable in 

cyclical industries where, even with isolating mechanisms in place, a strategic group in 

which all competitors enjoy a similar level of isolating mechanisms is clearly 

distinguishable.  

The fact that the game generates order of entry competitive advantages in an 

industry without isolating mechanisms can help us understand competition not only in 

natural resources but also in differentiated product industries. To the extent that a 

differentiated product industry has high capital investments, lead time and potential for 

overinvestment, mastering timing of entry can also be a sustainable source of order of 

entry competitive advantage, even though prices may not oscillate as they do for 

commodities. 

In our model, cycles are endogenously driven. However, the possibility of 

building order of entry advantages also exists for exogenously driven cycles, such as 

the business cycle. In fact, recent studies have started addressing the conditions under 

which the business cycle might alter order of entry advantages (García Sánchez, 

Mesquita, & Vassolo, 2014). For this to happen, there must be some isolating 

mechanisms in place. It is easy to think of potential isolating mechanisms in natural 

resources industries, mainly related to cost advantages (i.e. scale and learning 

economies). The existence of these mechanisms might reinforce order of entry 

advantages based on the decision-making process.  

Our research formalizes the mechanisms behind anecdotal evidence suggesting 

that it may be possible to earn abnormal returns by determining the best times to start 
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and stop producing a certain commodity product. In particular, several U.S. farmers 

producing milk sold their cows in early 2008, anticipating negative margins in 2009, 

and re-entered the market during 2010, earning abnormal returns (Nicholson & 

Stephenson, 2015). Interestingly, they planned their expansion during 2009, when 

prices of cows and equipment were low, entering into production at the end of 2010, 

when prices started to recover. 

Firms face a tension between current revenue and cumulative revenue when 

they decide to switch markets based on a countercyclical approach. The critical decision 

is whether to use current prices as a proxy of future values. Since aggregate investment 

decisions might drop prices in the future, optimal current strategies request some degree 

of differentiation from competitors’ decisions. Nevertheless, behaving 

countercyclically brings fundamental uncertainties, primarily centered around 

competitors’ aggregate decisions, in a context where switching from one product to 

another has a substantial  opportunity cost and a nontrivial setup time. However, simply 

following a countercyclical strategy analyzing competitors’ investments does not 

necessarily lead to a sustainable competitive advantage. Such advantages exist 

primarily in competitive and volatile markets, where competitors are sensitive to price, 

and enjoy moderate setup times. Order of entry advantage also decreases as other firms 

enter the market. One of the conditions for the success of a countercyclical strategy is 

that the anti-crowd cohort must be small. As the number of members in the anti-crowd 

group increases, the potential gains vanish, since producers’ aggregate decisions affect 

the cycle by reducing the price levels first movers can achieve.  

 Our study has implications that go beyond natural resources industries. We 

complement the literature on asset reconfiguration (Chakrabarti, Vidal, & Mitchell, 

2011; Dierickx & Cool, 1989) where returns not only depend on factors such as 
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efficiency or differentiation but also on the timing of buying or selling assets, 

introducing a new context: endogenously determined cycles.   

Limitations 

The set of assumptions in our basic model is a source of multiple limitations on 

the generalizability of our results. First, the type of competitive advantage described 

here is likely to lead to some degree of industry consolidation. However, the model 

does not allow for consolidation: companies that face losses remain in the industry. If 

we relax this assumption, we might observe increasing industry concentration, 

ultimately altering our findings. 

Another limitation of our model is that we assume cycle regularity, when in 

reality the duration of cycles varies unpredictably. Anti-crowd competitors’ 

performance can be seriously affected by such uncertainty, as their strategy is partially 

based on cycle forecasting. 

Moreover, given that the value of an anti-crowd strategy depends on a minority 

of agents following such a strategy, future research should explore the factors that lead 

to learning in the crowd group and the mechanisms via which competitors might switch 

groups. 

Finally, the cycle in our model is endogenously determined. However, natural 

resource prices depend also on factors exogenous to their industries, like the US interest 

rate or the financial markets. Therefore, future research should examine to what extent 

our findings hold as prices increasingly depend on exogenous factors. 

 

CONCLUSION 

Order of entry advantages have been a matter of intense analysis since  

Lieberman & Montgomery's (1988) seminal work. After several decades of research, 
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the topic remains controversial, and it is still unclear how and under what conditions 

order of entry matters, both at the theoretical level and considering the empirical 

evidence (Zachary et al., 2014). We contribute to this debate by studying a previously 

unexplored setting: natural resources industries. Specifically, we develop a 

mathematical simulation model with a certain number of competitors following a price-

countercyclical strategy (“the anti-crowd”). The success of this strategy depends on the 

existence of a sufficient number of competitors who follow a procyclical strategy (“the 

crowd”). Our model offers a powerful tool for analyzing sustainable competitive 

advantage in in the absence of traditional isolating mechanisms.  
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FIGURE 1 

 

Conceptual Model 
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FIGURE 2 

 

Model Decision Tree Red and White Grape Producers Minority Game 
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FIGURE 3 

 

Price and Production Dynamics 
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FIGURE 4 

 

Cumulative Profit Comparison Crowd vs. Anti-Crowd Groups 

 

Simulation parameters: Setup Time=2 years, Number of Crowd Competitors=7000, Number 

of Anti-crowd Competitors=700 
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FIGURE 5 

 

The Crossed Impact of Price Sensitivity, Setup Time and Total Number of 

Competitors on Anti-crowd Performance 
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FIGURE 6 

 

The Influence of % of Anti-crowd Competitors 

on Anti-crowd Performance 
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TABLE I 

 

Model Initialization Parameters 

 

 

  PARAMETER 
INITIAL 

VALUES 

Number of Crowd Competitors – CR 7000 

Number of Anti-crowd competitors – AC 700 

% of White Producers 57% 

Unit cost j – cj 6000 

Maintenance Cost (when switching production) 0 

Demand Function Slope -1 

Crowd competitors sensitivity to change –  (Change Factor) 0.001 

Simulation span (Number of years) – T 100 

Warm up period (Number of years) – t 10 

Number of producers setting up during warm up period 𝑘  120 

Setup Time - 𝑠 2 

Number of replications (Monte Carlo runs) 70 

 

 

 

 

 


